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My earliest memaory of mathematics recalls writing

oA G
e
P

numbers in the spaces of a grid. Little did the first

ARSI

grader know that by creating this "box of numbers", he was

' laying the groundwork for subsequent study in matrices,

A
P

themselves very special "boxes of numbers." After studying

1
S

E matrix theory as a high school freshman, I remember hoping
. for a chance someday to pursue it in great depth. Though
the hope has now been realized, it will by no means be put
to rest: for my master's in mathematics, I will pick up
where this thesis left off.

Fortune doesn’'t always favor us, and as Machiavelli

‘r‘:l. T RN
2 A w0, e

¥

says, Will strike after being wooed and cajoled. However,

2ty
"

§ e she must have been in a good moad in the Fall of ‘84 because
our class had Dr. John Jones Jr for Numerical Analysis. His
presentation of matrix algebraic concepts delighted me, and
upon discovering his abiding interest and renown with matrix
f) equations, decided to study under him. Undoubtedly,

N Dr Jones was one of two teachers having a profound impact on
my mathematical development. I couldn’'t have wished for a
finer advisor and coach than him. His patience and positive
outlook sustained me during those times when I was setting
o back mathematical science instead of advancing it. For him,
theory and applications are one, though primacy goes to

fi theory. Just as it should be. Thanks for your interest in

AR e me, Dr Jones. I will return your concern years hence to one

........ .
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of my students.

To LTC (and Dr.) Charles Ebeling, my reader in the
Operations Research Department, I want to thank for being
(I believe) a mathematician at heart, and hence an ally in
the department. 1If I couldn't have done a mathematical
thesis, I would have done a simulation one and sought you
out as an advisaor. Thanks for nof discouraging me from

pursuing an interest begun years ago.
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Abstract
o This paper seeks the solutions to a system of equations
(equalities) in n variables by expressing the system in
matrix algebraic form. Properties of the solutions to the
ensuing matrix equation are investigated using similarity
transformations. The three types of matrix equations to be
“ studied are.the linear equation -
- AX = b
the Lypanov equation
AX - XB = C
s the second-order Riccati equation — -
v | XDX + AX + XB + C = O
and the third-order Riccati equatiéﬁ_—'
¢y6 XAXBX + XCX + DX + XE + F = 0 .
The entries of all matrices, including the solution X, are
restricted to being polynomials in © having complex
coefficients, where " is thé n-tuple of indeterminates.
That is, alihmatrices are elements of the ring ¢~ (r) for
m and n of appropriate size.

- Because adding and multiplying matrices (having
multivariate polynomial entries) is tedious in practice, an
interactive BASIC program is presented in the appendix.

N This program, which can be used on a personal computer,
permits the user to perform operations on matrices having
multivariate polynomial entries. Via menu selections, the
i user may perform

-weighted addition between two matrices

vii
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-multiplication between two matrices

-create matrices, with an option of building a diagonal
matrix whose diagonal entries are all equal

-view matrices

~transpose a matrix

—-extract special submatrices (U,M,V,N of Chapter 1IV)
from a given matrix.




---------------------

1 QOverview and Literature Review

Overview. This paper seeks the solutions of the

third—-order Riccati matrix equation

XAXBX + XCX + DX + XE + F = O (1.1)
where the entries of the matrices A,B,C,D,E,F,X are
multivariate polynomials. In solving (1.1) the linear
matrix equation

AX = b
the Lypanov matrix equation
AX - XB = C
and the second-arder Riccati matrix equation
XDX + AX + XB + C = O

will be addressed because the form of their solutions will
hint at the nature of those to (1.1). Because cursory
knawledge of matrix algebra is sufficient to motivate the
paper ‘s thesis—-~the solution to (l1.1)--the rigorous (and
lengthy) definition of terms and statement of objective will
be made in the next chapter.

Why a matrix equation (such as those given above) is
worthy of attention, let alone finding its solution, is a
legitimate concern. Practical problems often arise which
require the solution to a system of m equations in n
unknowns, e.g., the system of equations

c (1.2)
£

ax + by
dx + ey

where all variables except x and y are known. One way to

1.1
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find the solutions x and y is to express the system in its

equivalent matrix form

L0 - [

(which is a linear matrix equation) and solve for x and vy,

i.e.
-1
X a b c

[y] - [d e] [f]
Thus, a system of equations may give rise to a matrix
equation whose solution in turn gives the answer to the
aoriginal system.

Other more complex systems may have a matrix

representation. For instance

[x y] [: ::]' [x] = [e] (1.3)

Y

[xa + yc xb + yd] [x}
Y

[x(xa + yc) + y(xb + ydq

[xla + xy{c + b)) + yld]

which means that the system consisting of the one equation
xla + xy{(c + b) + yid = e

is represented by the matrix equation (1.3). These two

examples show that matrix equations warrant attention if for

no other reason than they can help solve systems of

equations arising in practical problems. Indeed, given the

. - nonlinear optimization challenge
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Maximize f(x) subject to (1.4)

equality constraint,
[ ]

equality constraint,
the constraint set may be expressable as a matrix equation.
If so, this equation can be solved to identify the feasible
region determined by the constraints and thence the optima.
This approach is an alternative to solving (1.4) using, say,
Lagrangian multipliers and partial differential calculus.

In examples (1.2) and (i1.4), the variables are often
taken to represent real or complex numbers. However, there
is nothing stopping the variables from assuming functional
values. For instance (1.2) may assume the form

au,v)x + b(u,vly = clu,v) (1.3
du,vix + efu,viy = f(u,v)

where a,b,c,d,e,f are functions of the parameters u and v.
Though the solutions x and y of (1.5) wouldn’'t necessarily
have numeric values, this is all right because all other
variables are functions: x and y will likely take on
functional forms. To illustrate,

[uzv u] [u + v] = [uzv(u + v)
uv v u - v uviu + v)

ulu - v)
viu - v)

+ +

= fuSv + u3v2 + yz - uv
u®v + uv® + uv - v=

and so a solution to the matrix equation

[uzv u] X (U,v) = [u=v + u2v2 + u2 - yv
uv v y{u,v) u®v + uv® + uv - vz]
is x{u,v) = u + v and y{u,v) = u - v. As given in (1.1),

this paper will address matrix equations whose entries
1.3
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assume the functional form of a paolynomial in several
variables.

Another area where matrix equations appear (where the
matrices’ entries are multivariate functions) is control
theory, the science addressing the orbital natures of
objects in space. Matrix equations frequently arise from
systems of differential equations which describe a
satellite’'s orbit. For example, given X(t) a columnar
matrix whose entries (each describing an aspect of a
satellite’'s orbit) are functions in the parameter t, a
theorem from control theory states that the equilibrium of
the system of differential equations

dX

— = FX

dt
is asymptotically stable if the Lypanov matrix equation

FTP + PF = -C (1.6)

has a positive-definite solution P for any matrix C > O.
Though the terms in this theorem won‘'t be defined here (see
£4:144-1521), the important item is that a satellite’'s
orbital stability depends on the solution of a Lypanov
matrix equation (1.6).

Matrix equations can also describe the path taken by an
X-ray passing through matter. This is a concern of the
medical community since the quality of CAT scan pictures
depends on the manner in which the X-rays penetrate the
skull. A goad description of the path may allaw finding a

1.4
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brain tumor, whereas a poorly chosen angle of entry may not.
R. Vasudevan [32]1 develops higher order Riccati equations
describing how beam particles scatter upon hitting matter,
e.g. the skull. Simply put, scattering is modelled by
including higher powers of a solution matrix X in a Riccati
equation. For instance, scattering may be roughly described
by the second order Riccati equation
XDX + AX + XB + C = 0O
and more completely by the third order Riccati equation
XAXBX + XCX + DX + XE + F = 0O

where the coefficient matrices A,B,C,D,E,F reflect known
characteristics of the environment in which the X-rays
behave. Higher powers of X will more accurately describe
scattering. Bellman and Vasudevan [2] describe techniques
reducing a given Riccati equation to one of lower form.
This reduction (quasi-linearization) leads to a series which
converges to the actual solution of the original equation.

Literature Review. The literature supporting this
paper addresses three topics:

I generalized inverses of matrices
II a}gebraic structures of matrices over fields and
rings
II1I1 the Lypanov and Riccati equations
Category I. An understanding of matrix

generalized inverses launched the research behind this
paper. Matrix generalized inverses encompass the

traditional notion of an inverse by assigning these to

non-square matrices. The theory is well developed for
1.5
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matrices whose entries are complex numbers, and is described
belaow.

The physicist R. Penrose (28] proved in 1955 that for
any matrix A whose entries are complex numbers, there exists
matrices U,Y,Z,W having complex entries such that:

1. AUA = A (1.7)

2. YAY =Y

3. AZ equals its conjugate transpose (i.e., AZ is

Hermitian)

4. WA is Hermitian
The matrices U,Y,Z,W are known as the "generalized inverses"
of A. Penrose also showed the existence of a matrix X which
simultaneocusly satisfied conditions (1) thru (3), and a Y
simultaneously satisfying (1), (2) and (4). Penrose also
showed that if a matrix X satisfied all conditions (given a
matrix A), then X was unique. From the traditional matrix
algebra viewpoint, this unique X corresponds to the familiar
inverse of a square matrix A whose determinant is not equal
to zero. Though Penrose’'s work was original, he was unaware
that the mathematician E.H. Moore [24]1 had proved (using
abstract algebra) the existence of generalized inverses for
arbitrary rings more than three decades earlier.

Raoc and Mitra‘s textbook [29]) is devoted to the study
of generalized inverses, and is a frequently cited authority
in this area. The first two chapters of [4] present
techniques (with the justifying theorems) generating various
types of generalized inverses for a given matrix A, while

Captain Craig Murray, AFIT Class GCS 85D, has recently

1.6
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completed the programming of these techniques. Two papers,
[12] and [21], use generalized inverses to prove theorems
about special types of matrix equations whaose entries are
complex numbers.

The power of generalized inverses weakens as one moves
from matrices with complex entries to those with
multivariate entries, the subject of this paper. This is
because the theory in the latter is still very young.
Sontag [31] discusses the existence of some generalized
inverses for special matrices, while Jones [11] uses these
generalized inverses to solve certain matrix equations.

Category 11. Most of this paper’'s research dealt
with the decisive influence on the existence and form of
solutions to matrix equations: the algebraic structure of
matrices. An illustration of the importance of algebraic
structure is readily given: the solution of the equation

X +7 =295 (1.8)
cannot be found among the set of positive integers Z* (even
though the coefficients 7 and S5 are positive integers)
because its structure doesn’t include megative numbers.
Since -2 is the solution, (1.8) must be placed in a larger
algebraic structure in order faor a solution to exist. Thus
one moves fram Z* to the set of all integers Z. Though Z
has a larger algebraic structure than Z* it still isn‘t
large enough to contain the solution of the equation

2« - 8 =7 (1.9)

1.7
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even though the coefficients 2,-8,7 are found in Z. It now
becomes necessary to move to a larger structure (the set of
rational numbers) to find the solution to (1.9), 15/2.
Likewise, to solve the equations x2 = 2 and x2 + 1 = 0 one
must move to the larger algebraic structures found in the
irrational and complex numbers respectively.

Matrices too lend themselves to different structures.
However, not only must the form of a matrix be addressed
(e.g., whether it’'s invertible, whether it’'s similar to
another matrix), but the structure in which individual
entries are found must also be considered. For instance,
decomposing a matrix into a product of other matrices may
depend upon whether or not an entry is irreducible in its
own setting. A trivial example is decomposing the 1 X 1
matrix

[xZ + x - 11 (1.10)
into a product of two other 1 X 1 matrices each having
polynomial entries whaose coefficients are integer, as is the
entry in (1.10). Such a decomposition is impossible because
XZ + x - 1 cannot be expressed as a product of two
polynomials with integer coefficients. Indeed, the roots of
this equation are (-1 2 ¥5) /7 2 , which are irrational.

In general, this paper allows matrix entries to be
multivariate polynomials (having complex coefficients, e.g.,
X2 + xy, XyZ2z - (2 + 3i)x®yz), who in turn have complex

algebraic structures. In fact, a solid understanding of

1.8
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abstract algebra would have helped make several articles
intelligible. Though Fraleigh’s text [7] was found to be an
excellent primer on abstract algebra, time did not allow
sufficient study of a subject key to this paper. Wang [331]
gives an algorithm for irreducible factoring of multivariate
polynamials having coefficients in an arbitrary algebraic
number field. McClellan [23] presents methods for solving
sys@gms of equations involving univariate polynomials with
rational coefficients (this paper highlights his doctoral
dissertation). Two papers from the early twentieth century,
[3] and [27]1, discuss the form of factors between
polynomials.

The algebraic structures of matrices was addressed by
Frost and Storey [8] and Lee and Zak [201. These special
structures, called Smith Forms, are discussed in the next
chapter. Unfartunately, only the Smith Forms of matrices
having bivariate polynomial entries can be addressed: the
Smith Form involving multivariate entries remains an
unresolved issue in mathematics.

ateqory I1II1I. Working from a base rooted in
generalized inverses and recognizing the critical role of
algebraic structures on matrices (and again among their
entries), a study of matrix equations can proceed. Though
much has been published on finding solutions to systems of
equations, many authors succeed in finding only particular
solutions. After all, finding the general forms of all

1.9
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solutions may have either been a far too ponderous task or
the mathematical approach proved elusive. In any case,
viewing a system of multivariate equations as a single
matrix equation (having a solution in its own right) is not
commonplace. Depending on the nature of the system, the
entire solution set may be found by solving a matrix
equation representing the system.

Work has been done on matrix equations having complex
entries. Roth [30] (a frequently cited paper) wrote on the
Lypanov matrix equation in 1952, and had his work extended
in 1972 by Jones [12] who also addressed the second order
Riccati equation, using generalized inverses to identify
solutions. Morris and Odell [25] attempted to find the
common solutions to a set of linear matrix equations
{ALX = Bw} by using generalized inverses. Lancaster [18]
provides several approaches (none using generalized
inverses) to solving ‘ -e matrix equation

Y ALXB. = C

As matrix equations assume multivariate polynomial
entries, the constraints cited in the previous section
seriously handicap the search for solutions. As a result,
pioneering work in these equations is still underway.

The papers (111, [16] and (17] give recent results connected
with the Lypanov and second/third order Riccati equations.
Collectively, these papers address the roles of generalized

inverses and matrix algebraic structures in the search for

1.10
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solutions to these matrix equations.
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II1 Foundations

This chapter lays the groundwork for later
developments. Because this paper seeks solutions to matrix

equations, the latter’'s nature will be addressed first.

Matrix Equations. A matrix equation is an algebraic

expression whose arguments involve matrices. Matrix
equations are frequently used to represent a kindred system
of equations. For instance, the system of equations

7
1

2% + 3y
4x -~ 2y

is represented by the matrix equation
[2 3] [x]
4 =2 Yy

which has the familiar form

]
—
- ~
[ S—————

AX = b (2.1)
where

A = [2 3] X = % b = 7
4 - A [v] [1]
The reason for expressing a sysfem of equationé in matrix
algrebraic form is, of caurse, so that the machinery of
matrix algebra can be used to find a solution to the given
initial system.
Other systems of equations have matrix representations.

For instance, the system

X + 2u=295
3x + 4u = 7
9% + 10u = 23
y + 2v = 6
3y + 4v = 8
9y + 10v = 24

2.1
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has the matrix form

BRI

9 10 3 24

which in turn has the form (2.1) where
A = [1 2] X = [x y] b = [ S 6]

3 4 u v 7 a8

9 10 23 24
Thus in viewing (2.1), it isn’'t necessary that b and X be
one—columnar matrices and A square, as is traditionally
presented.

Lypanov_Eguation. The linear matrix equation
(2.1) leads ta the slightly more complex equation

AX + XB = C (2.2)

which is known as the Lypanov equation. In order for (2.2)
to be defined, the matrices A,B must be square (though
not necessarily of the same size) and the matrices X,C must
share the same size (though they may be rectangular). To
see why this is true, let the following hold:

MATRIX A X B
SIZE aXhb c X d e X

For AX to be defined, b must equal c: b = c. For XB to be
defined, d = @e. AX is a X d and XB is c X f. For
AX + XB to be defined, a = c and d = f. Since b = ¢ and
a=c,a=>band Ais square c X c. Similarly for B: d = e
and d = f and so e = f which makes B square d X d. It
follows that AX + XB is ¢ X d which is the size of X.

To illustrate (2.2), the system

2-2
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( x + 2u) + (5x + 8y + 11z) = 14 (2.3
(y + 2v) + (bx + 9y + 12z) = 15
(2 + 2w) + (7x + 10y + 13z) = 16
(3x + 4u) + (Su + B8v + 11w) = 17
(3y + 4v) + (bu + 9v + 12w) = 18
(32 + 4w) + (7u + 10v + 13w) = 19
has the Lypanov form
(A X + X B)
i 2] b Y 2z + X Y z S é 7
LS 4 [u v w] [u v w] { 8 4 10]
11 12 13
()
= [14 15 16
17 18 19

Of course, (2.3) can be expressed as (2.1) by combining like

terms, thereby creating six equations in six unknowns.

;: However, it will be seen (Chapter IV) that by solving the
. Lypanov equation instead of its equivalent linear form
e {2.1), solutions of a higher order matrix equation can be

E% derived, one in which the Lypanov is embedded. This higher
z% equation is known ;s the second-order Riccati equation.

: Riccati Eguation and Higher. 1In high school
Ei algebra, a student moves from solving the simple linear

E; equation bx = ¢ to the higher order quadratic equation
Ei ax2 + bx = c (in which is embedded the linear equation

gf bx = c). In the present setting, the former equation is
'? likened to the Lypanav matrix equation and the second-order
‘; Riccati matrix equation to the quadratic. The Riccati

: equation has the form

XDX + AX + XB + C = 0 (2. 4)
é . For (2.4) to be defined, A and B must be square (possibly
: ' 2.3
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not the same size), D must have the size of X7, and X,C
share the same size. The argument for this follows that of
the Lypanov equation.

To illustrate (2.4), the Riccati form of the system

XZ 4+ uy + 2x = -1 (2.9
Xy + yv + 2y = =2
XZ + yw + 2z = -3
ux + vu + 2u = -4
uy + v2 ¢+ 2v = -5
uz + vw + 2w = -6
is
(X D X + A X)
[x y z] 1 OYrx vy z] + [1 0][x y z] +
u v w [0 1][u v W O llu v w
0 0
(X B D = 0)
xy2100+[123]=[000]
[u v w] [0 1 0] 4 S A O 0 O
O 0 1

As with the Lypanov equation, there may exist many solutions
to the second-order Riccati equation. In fact it will be
seen in Chapters III and IV that the solutions of (2.4) will
satisfy pairs of equations determined by the matrices
A,B,C,D in (2.4).

As it is an easy matter to create a polynomial of a
given degree (e.g., 3x® + 3x2 - 7), so is it also to create
a higher order matrix equation. For instance, the third
order Riccati equation

XAXBX + XDX + AX + XB + C = 0 (2.6)
or the related matrix equation

EXAXBXF + GXDXH + AXJ + KXB + C = O

where the matrices not equal to X are known and so can be
2.4
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thought of as coefficients of a polynomial in x. However,
the non-commutativity of matrix multiplication gives the
placement of each coefficient matrix a decisive influence on
the solution.

A natural question that arises is whether or not a
given system has an accompanying matrix form. At present,
the only known way to answer this question is to experiment,
an understandably unattractive task. However, if a matrix
representation is derived (or stumbled upon), the concepts
presented in this paper will help to identify the solutions
to the given matrix equation, and thus to its underlying
system of equations.

Matrices Over a Ring. Two items determine the nature
of a matrix: its size and entries. Concerning the latter,
a matrix is said to be "over a set S" if and only if its
entries come from the set S. For example if 5§ = (1,2,32
then the 1 X 4 matrix

A = [3 11 2]
is "aver S" because each of its entries belong to S. However,

the 2 X 3 matrix

B = [1 2 3] (2.7)
3 2 -
is not "over S" because B(2,3) = 0, which is not a member of

S. 1If however, S = {the real numbers} , then B is "over S".

Likewise, if

AR TR PLPL VLR P LT R TS S PN . LRy P S SO S TSP L0 TP T Sy PO Sy S Y WU S Gy G S ST S I S T S S, S




A = [2 + 3i 7 ] (2.8)
? 8 - 7i

then A is not a matrix over the real numbers, but is a
matrix over the complex numbers. In this paper, the set of
complex numbers will be given by the symbol ¢ (see the "List
of Symbaols").

These examples lead to a notation used throughout this
paper: given a set S, the set of all m X n matrices whose
entries are in S is symbolically given by

Gmxn (2.9
If A is an m X n matrix whose entries are in S, then the
statement "A is an element of S™*"" jg represented by
A €& Smxn

Example: From (2.8), A €& ¢2*2 hecause A is a 2 X 2
matrix whose entries are complex. However from (2.7), B is
not in ¢**%= pecause B is a 2 X 3, despite the fact that the
entries of B are elements of the complex numbers (the set of
real numbers is a subset of the complex numbers). However,
B € ¢ 1

The concept of "overness" will now be extended. Let

S(x) = {all polynomials in the variable x
with coefficients in the set 52

(2.10)
Thus if S = (1,2,3}, then
f(x) = x2 + 2x + 3 € S(x)

because f(x) is a polynomial in x with coefficients in S.

However

fly) = y= + 2y + 3
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is not in S(x) because f(y) is a polynomial in y. Likewise,
fix) = 7%= + 2x + 3
is not in S(x) because the coefficient of x2 is seven, which
‘s not found in § = {1,2,3}. It follows that ¢(x) is the
set of polynomials (in the variable x) with complex
coefficients.
Similar to (2.10), let

S(x,y) = {polynomials in the variables x,y
whose coefficients are in the set S}

Thus if S = {4,5,2, then

filx,y) = 4x*°%yS + 2%x2y + S5x + Sy € S(x,y)

because f(x,y) is a polynamial in x,y with coefficients in
S. It follows that ¢(x,y) is the set of polynamials in the
variables x,y with complex coefficients.

In general, let r represent the n-tuple (Xi,X2,...,%n).
Then given a set 8, S(r) is defined to be the set of all
polynomials (in the variables found in M) with coefficients
in the set S.

Example: If r = (x,y,z,v,w), then ¢(r) is the set of
all polynomials in the variables x,y,z,v,w with complex
coefficients. Thus

fF(XaYg2ZyveW) = (4+45i)%= + xyzvw — (2+12i)w” ¢ ¢(r).
However if S is the set of real numbers, then f(x,y,2,v,W)
is not in S(M. N

Now to extend notation to matrices. Define

§m%xr(r) = {m X n matrices whose (2.11)
entries are in S(M)3}

2.7
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Thus if § = (1,2,4,8,9> and r = (x,y,z) and

A = [xzyz + 9z X ]
2% 4yz + B8Bz=

then A ¢ S=*2(r) because A is 2 X 2, and each entry of A is
a polynamial in r = (x,y,z) with coefficients in S. However
if 8§ = (1,2,4,8}, then A would no longer be in S$2x2(n)
because a coefficient of A(1,1) isn‘t in S (namely, 9).

From (2.11), ¢™*"(r) is the set of all m X n matrices
whose entries are polynomials in r having complex
coefficients.

With this final definition, the object of this paper
can be stated: find the solution X € ¢™*"(r) of the
third-arder Riccati equation

XAXBX + XCX + DX + XE + F = 0 (2.12)
given r the tuple of indeterminates in the polynomial
entries of A,B,C,D,E,F ¢ ¢“*2(r) for k,ji,m,n Of appropriate
size.

One may feel that in (2.12), mandating X & ¢(r) is
unduly restrictive. After all, forcing the solutions of
X2 - 2 =0 (a polynomial in x over the integers, i.e., a
polynomial with integer coefficients) to again be a
polynomial over the integers isn‘t possible, since ¥2 is
irrational. Also, given the matrix equation AX = b with
the entries of A,b integer and A square and invertible, it
may not be possible to have the solution X = A~*b to again
have integer entries. Why then require X in (2.12) to have

entries in ¢(") when (like these two analogies) it may be
2.8
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e necessary to leave ¢(r)? The argument is well posed, since

“ a given matrix equation may indeed not have a solution in a
given space. In fact, practical solutions could be missed
by restricting solutions for theoretical reasons.

The reasons for mandating X ¢ ¢™*"(r) are in part
pragmatic. First of all, polynomial entries don‘t lend
themselves to singularities: X would be defined at all
values of ", This is important because given an entry that

is a rational function (e.g., 1/x), there may exist a

singularity or discontinuity at a value which in fact does
have physical significance. Because of the rational entry,
the form of the solution may prove untenable. Secondly,
many functions can be approximated by a series of

‘f; polynomials, e.g., Chebysev polynamials [5:239]1. In fact,
computational considerations may force the analyst to use
polynomial approximations of a function. Restricting the
entries of X to ¢(r) would help generate these polynomials
to be used in approximating the solutions to a phenamena.

The driving force, however, for requiring X €é ¢~ (n)

is thearetical: is it possible to find some solutions in
the same space as the coefficient matrices in a given matrix
equation? If so, how would the solutions be obtained? It
may very well be that solutions thus found may shed light on
the nature of solutions which lie outside the required
space.

A word needs to be said on the setting for addition and

2.9
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multiplication on matrices over ¢(r)., Though these

operations seem to hardly merit concern, there is

in fact an extremely important algebraic structure behind
them. Some of the current literature on matrix equations
refers to this "ring" structure aof ¢™*"(r).

In the broad setting, a set of aobjects S (e.q.,
matrices) is given, and two operations, + and #, are defined
(e.g., matrix addition and multiplication) between a pair of
elements of S. These operations have the property that if
asb € Sthen: a+b , a#*b €S and a +b , a*b assume
unique values (e.g., a + b has aone value and one value
only). Operations with these closure and uniqueness
properties are called binary operations. Depending on the
nature of the operations, an algebraic structure (denoted by
<S,+,%#>) is defined on the set S taken together with the
operations. For S the set of matrices over ¢(r) and the
customary operations of matrix addition and subtraction,
<S,+,#> is known as a ring.

A ring <{R,+,%> is a set R together with two binary
operations + and # defined on R such that the following
axioms are satisfied [7:1951:

R1. <R,+> is an abelian group.

R2. # is associative.

R3. For all a,b,c ¢ R,

a®(b+c) = (a#b) + (a#*c)
and
(a+b)#c = (a#c) + (b#c)
It is an easy matter to confirm that the operations of

matrix addition and multiplication satisfy the ring axioms.
2.10
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closes by addressing two familiar properties of a matrix:
its determinant and rank. Both will be cited throughout
this paper.

The rank of an m X n matrix A (denoted by rank(A)) is
the number of linearly independent columns in A. Chapter 111
will show that rank(A) affects the solution of the matrix
equation AX = b, where A,X,b are matrices over ¢(r). In
finding rank(A), the determinant of a matrix will come into
play.

Despite the many techniques which find the determinant
of a square matrix, later proofs will refer toc the first
historical definition of a determinant, computationally
inefficient though it is. This definition, later referred
to as the "permutational”" form of a determinant, derives its
name from its indexing (of matrix elements) on a permutation
of a set [26:891.

Given the set of integers S = {(1,2,...,N} a
permutation on S is a one-to-one and onto mapping ¢ from S
into itself, and is represented by a 2 X N matrix whose
top row is S and whose bottom row is a specific permutation

of S. For instance, the two permutations of (1,2} are given

33 = (32

For S = {1,2,3,4) one permutation is given by

by

2.11
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1 2 3 4
e - (
2 4 3 1

(where (1) = 2, 0#(2) = 4, ¢(3) = 3 and 6(4) = 1) and

another by
1 2 3 4
f.(
4 3 2 1
where ¢(1) = 4, £(2) =3, 0(3) = 2 and ¢f(4) = 1.
If A = laws) is an N X N matrix, then the

determinant of A is given by

det(A) = T [sgn(p) MNsai,nlas,pcs5)] (2.13)
pésS

' where
S is the set of all permutations on (1,2,...N2}

and

sgn(p) = %1, depending on the number of transpositions
which comprise the particular permutation p (7:47-481.

2.12
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III1 Solving the Linear uation AX = b

The key to solving the Lypanov and Riccati equations
involves finding the solutions of the linear equation
AX = b (3.1)
As before, matrices may be non-square but entries must be in
¢,
Though the matrices of (3.1) may be rectangular, one is
first led to investigating properties of a square matrix
A ¢ ¢"*"(r)=—in particular, whether or not A is invertible.
As in the real case, if det(A) equals zero, then A has no
inverse. In general however, the determinant of A is a
polynomial over " and thus has an inverse except at thé
roots of det(A). For example, if
X +y X
A= [ ] € ¢=2x2(x,y) (3.2)
Y Xy
then
det(A) = (x + yI)Xy = Xy = xy{x + y = 1)
and A has an inverse except in the root set of det (A)
{{x,y) 3 x =0 or y=00r x +y =132
If A must be invertible for all values of I (as will
soon be required), then det(A) can only be a non-zero
complex number. In this case A~* is easily found using the
well known formula [(26:961
A-* = |Al-* [matrix-of-cofactors of AlT
That A-! ¢ ¢"*"(r) can be seen by recalling that the

cofactor of an entry a., of A is the determinant of a
3.1
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submatrix of A (obtained by deleting the i ‘th row and j’th
column of A). Because the entries of A are in ¢(r), the
cofactors are also in ¢(r), and thus the transpose of the
matrix af cofactors is in ¢"*"(r). Since det(A) is assumed
to be a non—-zero complex number, so too will {Ai~* which
implies A~ ¢ ¢"*"(r). With this in mind, a specific form
of (3.1) can be solved for X: if A € ¢"*"(r) and
det(A) € ¢ — (0} then there exists an A—* € ¢~*~(r) and
X = A~*p (the general setting for the familiar result
involving real matrices). Finally, since the entries of A—*
and b are in ¢(r), so too are the entries in their product
X = A~*b as mandated in (3.1).

The picture becomes more complicated when A doesn’t
SV, have an inverse. This may be because det(A) = O,
det(A) € ¢(r) - ¢ , or det(A) isn’'t defined, i.e. A
rectangular. Nevertheless, (3.1) may still have a solution
and in fact, may have infinitely many. However, before the
general solution of (3.1) can be derived, a more universal

setting for ‘inverses’ of a matrix will be addressed.

The basic concept here involves elementary row and

e T

Lot amn e gn 4
R A

column operations on a matrix A € ¢™*~(r). Similar to

their counterparts for real matrices, elementary row

\ZCar
VT

¢ (column) operations on A are limited to:

1. interchanging two rows (columns)

2. adding a polynomial multiple of a row (column) to
another row (column)

3. multiplying a row (column) by a complex scalar not
equal to zeroa.

YTy

vy
t-

Y VT, T, YT,
f - v,
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As with real matrices, an elementary row (column) operation
on A ¢ ¢*"(r) is equivalent to left (right)
multiplication of A by the corresponding elementary row
(column) matrix. For example, interchanging the rows of
(3.2) can be accomplished by multiplying A on the left by
[0 1]
1 0
obtained by interchanging the rows of Iz=x=. Another
example: multiplying the first column of (3.2) by x= and
adding it to the second column can be accomplished by
multiplying A on the right by
b 7]
0 1
obtained by multiplying the first column of Iz=x= by x? and
adding it to the second column. Again, as with real
matrices, the determinant of an elementary matrix over ¢(n)
is a nonzero compléx number, and thus the elementary matrix
always has an inverse. It is for this reason that the third
elementary operation is limited to multiplication by a
scalar for if polynomial multiples were allowed, the
determinant of the resulting elementary matrix may be a
polynomial with degree 2 1. The matrix would then fail to
have an inverse at the roots of its determinant. A square
matrix whose determinant equals 11 is called unimadular, and
80 is invertible.
Both elementary row and column operations are used on A
to find the general solution to (3.1). Though two different

3.3
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cases must be considered--A does and doesn’'t have constant
rank—both follow the same approach: find unimodular
matrices P and @ that reduce A to a form yielding the
general solution of (3.1). The two cases will be analyzed
separately.

AX = b, rank(A) constant. The aim here is to transform

A € ¢~*", using elementary operations, into the m X n matrix

IDKB oan—P
A1 = ] (3- 3)

Om—p.p0 Om-p.n-p
where p is the rank of A. The main question thus
becomes, "What are the unimodular matrices P and @ such that
PAQ@ = A,?" Once P and @ are found, the general solution of

(3.1) will follow, as this chapter will show. That such P

‘bk and Q@ do exist wa: recently proven by E. Sontag [311]:
THEQREM 3,.Q (Sontaql): The following statements are

equivalent for a matrix A = A(r") over R = ¢{(r):

a. There exists a matrix B over R such that
ABA = A and BAB = B. B is called the weak
generalized inverse (or the (1,2}-generalized
inverse) of A.

b. There exists square unimodular matrices P and @
over R such that A, = PAG.

B S5
L@ e FRE
A :
T

c. As a function of the the complex variables
P = (M1y4.0a9Mn), rank(A) is constant.

wrr v Ty

Proof: See [31]. 8
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A method for determining P and Q has been developed by

Dr. John Jones Jr., AFIT, and works by keeping a

‘cumulative’ record of all the elementary row and column

S - operations performed in reducing A to A,. The “Jones ST
- 3.4
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Method"” begins by forming the matrix

Am)(n | Ime
Az = (3.4)

Ian l onx-n

Subsequent elementary operations are done on Az until A
becomes A,. Once this point is reached, the matrix
occupying the I.xm block is P, and the matrix occupying the
Iaxn block is B. That these two blocks do indeed contain P
and G is easily seen: P and @ will be the respective
praoducts of the elementary row and column transformations
done in reducing A to A.; since I.xm is row adjacent to A, P
will be the left multiplier of A, and since Inx~ is column
adjacent to A, @ will be A’'s right multiplier. Also, both P
and @ are invertible, since their determinants are nonzero
complex. To see this, consider P = 1T Ry where the R,'s
are the elementary row transformations done in reducing A to
A,. It follows that
det(P) = det(n Ry) = 1 det(R,)
Since each det(R.,) is nonzero complex (the nature of an
elementary matrix), so will their product be, and thus
det(P). A similar approach holds for Q.
Example: Reduce to the form of (3.3) the matrix
1 X Yy
A= [ ] ¢ ¢=(x,y)
0 o 1
Begin by augmenting A by the identity matrices I=x= and

Isxs to form per (3.4)

e - . . . L A . -
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The next step is to get an identity matrix in the upper left
hand corner of A, per (3.3). First, interchange the second

and third columns to form

1 \'4 X 1 o)
0 1 o) o) 1
1 0 o

0 0 1 Osx=

(o) 1 (o)

Next, add -y times the second row and add it to the first to

form
i 0 X 1 -y
B (o) 1 0 o) 1
\
1 (o) 0
o) 0o 1 O=x=
0 1 0
Next, add -x times the first column to the third column
obtaining
1 o] 0 1 -y
0 1 0 (o] 1
‘ 1 0 -x
. 0 0 1 Oxx=
*7 (o) 1 0
:' The process is now complete since A has been reduced to the
b
e form of (3.3). The P and @ elementary row and column
&ﬁ matrices are read off to be
»

o 1 -y 1 0 ~x
b P = ] and @ = |0 o 1]
® ) 1 o 1 0

J
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Thus
1 o 0
PAR = { }
0 1 (o}
Since det(P) = 1 and det(@) = -1, P and @ are unimodular and
hence invertible. @&

The above example illustrates a theorem helping to
identify the general solution of (3.1) for A of constant
rank:

THEOREM 3.1: Let A € ¢™*"(r) and rank(d) = p a

constant. If P and @ are unimodular and

Ipo Opxﬂ—p
PAR =

Om—pxp Om-pxn—p
where
P = m ¢ Comxm(m) @ = [S NI ¢ ¢~ (M,
T EgeX~(r) , M€ ¢m™"(r) , 5 € ¢rxe(m),
N € ¢gnx~—P (M)
then
[A Imxm] is similar to Ioxe Opxn—p Toxm
Inxe Ohxm [Om_pxp Om—pxn-e Mm-po]
Snxe Naxn—p Onxm

on)(m Ian Inxn onXm om)&n Imxn\

PROOF: [menl om)(n] [Amxn Im)(m] [Qn)(n on)(m]

= [(PA)MXH PmXM] [Qn)(n On)(m]

I X on)(m omxn Imxm

[(PAQ)..,n 1 Prxm ] (from given and)

Q [aR Yal l Onxm

(substitute for P & Q)
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- Ir-ntp op:tn-p l Tpxn

om—p b £ -] om—p Xr—p Mm—p Xm

S.—.xp Nnxn—-p , Onxem

Since P and @ are unimodular,

on)tm In)(n

Pmxm oan] and [ Qaxn Onxm ]
0

mXer Ime

are also unimodular and thus invertible. This is seen by
noting that if A and B are square matrices, then
A o
det = det(A) * det(B)
0 B
a consequence of the permutational definition of a
determinant (2.13). H
Example of Theorem 3.1: Let
x Yy XZ + y + 1
A = [ ]
XZy xy* xZy + xyZ + xy
Matrices P and @ are sought that reduce A to the form (3.3).

First, augment A by the identity matrices I=x= and Isx= to

get
X Yy XT + vy + 1 1 o]
X2y xy® x5y + xyZ + xy (o) 1
1 0 0
0 1 0 Osx=
0 0 1

Next, add -xy times row 1 and add to row 2 to obtain:

X Y XZ + vy + 1 b 0
o) 0 0 =Xy 1
1 0O o)

o 1 0o Osx=

4] (o) 1

Next, add -1 times column 2 to column 3 to get:

3.8
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X Y X2 + 1 1 o]
(o) o) 0 -XYy 1
1 0] o

0 1 -1 03:2

0 o) 1

Now add -x times column 1 to column 3 to obtain:

b Yy 1 1 0
0 0 0 Xy 1
1 0 -xX

0 1 -1 Oxx=

0 0 1

Switching columns 1 and 3:

1 Y X 1 o)
0 0 0 -XYy 1
-X 0 1
-1 1 0 Osx=2

1 0 0

Adding -y times column 1 to column 2, followed by -x times

column 1 to column 3 yields:

1 0 o L1 01 >>T7T
o) 0 0 C—xy 11 >>M
-X Xy 1 + x=
-1 1 +vy X Ozx=

1 -y -X

”~ ~ ”~

~ N /

S N

Since A has been reduced to the form (3.3), P and @ have
been found, and thus S, T,M,N of Theorem 3.1. 1It’'s easy to

verify the unimodularity of P and @. B

The groundwork is naow in place to identify the general
form of the solution to (3.1). The following theorem is due

to Jones [111]:

3Iq




THEOREM 3.2: Let A € ¢m*~(r) of constant rank p and

b € ¢m*v(r), Then AX = b has a solution X & ¢°*v(r) if
and only if Mb = On—pxv, M given in Theorem 3.1. The
general form of X is given by
X = 8Th + NZ
S,Ts,N as given in Theorem 3.1, and Z € ¢"—"-v () arbitrary.
PROOF: Let P €& ¢™*™(r) and @ ¢ ¢"*~(r) be

unimodul ar matrices such that

Ip!p OPXr\-D
PAR = ]

o"“‘P P om-—p s N—p

as given in Theorem 3.0. Then AX = b has a solution X
iféf
PAX = Pb has a solution X (by virture of the unimodularity
of P and hence the existence of P—1)
iff
PA(RR—*)X = Pb = (PAR) (@-*X) has a solution X (since @ is
unimodular, there exists Q1)

iff
(PAR)Y = Pb has a solution Y = @-*X (3.95)
Let
Y = [prV ] 9 P = [TpXm ] [] Q = [Snxp Nan—p]
Z,-.—va : Mm—p)(m

Then substituting for PAR, P and Y in (3.95):

oz o) B - [°

[ ] = [Tb] (3.6)
Om—p!v Mb
Since Y = @-*X from (3.95),
X = QY = [S NI [W] = SW + NZ = STb + NZ
Z

Note that (3.6) allows Z to be arbitrary since 7 is zeroed

out by the second row of PAQ. (3.6) also says that if a

3.10
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solution exists to AX = b , then Mb must equal O,_p»..
This mandate is referred to as the ‘consistency condition’.
B

EXAMPLE (THEDREM 3.2):

Given
X Yy X + vy + 1
A = ]
XFy xy* xSy + xyZ + xy

b = [ X + Xy + vy + %%y + y=
XZY + xyz + x2y2 + xsyz + xys]

solve AX b.

The example for Theorem 3.1 (which reduced A) found

that

T [-x -1 11]=

1 0 , M=IL-xy 11 , 8§

and

r4
0

Xy 1 + x=
[1 + vy X
-y -
It is a simple matter to show Mb = O thereby confirming
the existence of a solution for AX = b. From Theorem 3.2
it follows that the general solution is

X = STh + NZ =
“ X% = X2y - xy - x3y - xy= Xy 1 + x=
L =X = XYy = Yy = X2y - y=2 + a |l + y] + B X
X +xy + y + xFy + y=
}5' where a,B €é ¢(x,y) B
t'f A benefit of Theorem 3.2 is that it easily identifies
the basis for the kernal of the linear transformation

represented by the m X n matrix A, a task generally qu:ite

E1 B tedious. Recall that the kernal of a linear transformation
n 3.11
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columns of N is a linearly independent spanning set of Ka,

represented by the matrix A is the set
Ka = { X : AX = Omx1 }
To find the basis of Ka, one must solve the equation
AX = Opxa

which is a special case of AX = b where b = O,hx:1 From
Thearem 3.2, it follows that

X = STb + NZ = STOmx1 + NZ = NZ
Thus the span of the columns of N is Ka. However, since
@ =[S Nl and @ is unimodular, the columns of @ are
linearly independent, and thus the columns of N. 8Since the
it follows that the columns of N are the basis for the
kernal of the linear transformation represented by the

matrix A.

AX = b, rank(A) not constant. Consider the following

matrix A € ¢5%xS(x,y,z)

x O ©O
A = [0 Yy O]
O 0 =z

which doesn‘t have constant rank:

(3.7)

Rank(A) ¢ {(0,1,2,3} , depending on the values assumed by

(Xy¥52): if x =y = 2z = 0, then rank(A) = 03 if x,y,z * 0,
then rank(A) = 33 if two are Q0 while the third isn’'t,
rank(A) = 13 if two aren’'t zero while the third is, then
rank(A) = 2. This section addresses the solution of the
equation AX = b given rank(A) not constant.

A result similar to Theorem 3.2 holds for such a

matrix A. The approach is practically identical to the

3.12
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constant rank case: find unimodular matrices P and @ which

{' reduce A to the form

b0 PAQ = ] s P

'_‘-:“: om—-p X A‘n—p Xr—p

v

1 (3.8)

\ where p is as large as possible and Q& € ¢™ ">~ —~P (). As
before, P and @ are found using the Jones ST Method. I+

,q% such P and Q@ are found (they may not exist), the following

(, theorem applies:

THEOREM 3.3: Let A € ¢™*"(r) If P and @ are
Eﬁ unimodul ar and

. [ Ioxe Opxn—p

n$< PAR = ]

Om—pxp RAm-pxn-p
where

(o P = [;] € CGuxm(r) , @= [S NI € ¢~%~(r),
! T € ¢=xm(r) s ME gmmem(m) , S ¢ eoxe(r)

N & grxn—e(r) , Q & ¢mexr—e(n)

J then

ZE; [A Imxm] is similar to Ioxe Opxn—p Toxm

o Iaxn Onxm [Om—pxp Ren—pxn—p Mn_pxm]

= Shxe Naxn—e Onxm

0 PROOF: identical to that of Theorem 3.1. @&

o Once P and @ have been found, the following theorem is
applied:

.é_ JHEOREM 3.4: Let A € ¢™*~(r) and b € ¢™*xv(r). Then

;i; AX = b has a solution X ¢ ¢~*¥(r") if and only if there

ii: exists a Z € ¢"""-v(") such that Mb = AZ M, given in

'i‘ b Thearem 3.3. In this case, the general form of X is given

;.




..........

by
X = STb + NZ
for all Z such that Mb = 9Z and S,T,N given in Theorem 3.3.
PROOF: Let P ¢ ¢~*™(r) and @ € ¢"*~(r) be

unimodul ar matrices such that

Ipxp opxﬂ—p
PAR = ]

om—p o P n"l—P L hd

AX = b has a solution X

iff
PAX = Pb has a solution X (by virture of the unimodularity
of P and hence the existence of A™1)

iff
PA(BR—*)X = Pb = (PAR) (@~ *X) has a solution X (since Q@ is
unimodular, there exists Q%)

(PAR)Y = Pb has a solution ;f: @-*X (3.9)
Let
ClEmnd Tl
Zn—pxw M- xm
and

Q= tSnXp Nn!r\—p]
Then substituting for PAQ, P and Y in (3.9):
[Ipxp Opxrn—p [w] = [T] b
Om—p.o nm—D.n—p] z M

W ] = {Tb] (3.10)
nz Mb

Since Y = @—X,
X = QY = [S N1 [w] = SW + NZ = STh + NZ
subject to ’
NZ = Mb (3.11)
per (3.10). This latter mandate is the consistency

condition. That Z € ¢"—»*v(r) proceeds from (3.9): since
3.14
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Q@ has polynomial entries and is unimodular, so too is -2,
Since X is also required to be in ¢~*¥(r) the product of
Q@~* and X must be in ¢"*v(). Since Z is a submatrix of

Y =X , Z € ¢ P*¥(M). N

In general, there is no assurance that the consistency
condition (3.11) can be met for a given equation AX = b:
though A may be reduced to the form (3.8), there may not
exist a Z OVER ¢(r) satisfying the consistency condition
fZ = Mb. It may be necessary to leave ¢(r) in order to find
a Z satisfying the consistency condition, an act contrary to
this paper’'s aim.

What then can be said about the solvability over ¢(r)
of AX = b when rank(A) isn‘t constant? 1It’'s possible that
A isn’'t reducible to the form (3.8). For instance the
matrix in (3.7): reducing A to the form (3.8) implies that

A has a rank no less than p (the first p columns of (3.8)

are linearly independent despite the form of ). However,

the rank of A may be zero if x = vy zZ =0, and so A isn't
reducible ta the form (3.8).

This example, however, is symptomatic of a larger
problem. Assume that a given matrix A has been reduced as
much as possible (no known method exists that insures
maximum reducibility of a matrix over ¢(r), r arbitrary),
i.e., the maximum value of p has been found. 0UOne is then
left with finding a Z satisfying the consistency condition.

ff in turn cannot be reduced, since this would violate the

3.15
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assumption that A has been reduced as far as is possible.
If A is square, det(fl) cannaot be a nonzero complex number
(if it were, rank(fl) = m - p and A could be reduced to
Im~oxm—py thus giving A constant rank, a contradiction). If
det (N) *= 0 repeated use of Cramer ‘s rule may identify saome
solutions Z, but these would be local since the roots of
det () must be omitted. In general, however, il will be
rectangular.

Thus finding the general solution of (3.1) given
rank (A) not constant ultimately requires solving (3.11)
where f cannot be transformed into the form (3.8). The
search for Z may be aided by matrices related to i, the
topic of the next section.

SMITH FORM OF A MATRIX. A matrix A € ¢~* (") 1is said

to be in Smith Form (SF) if and only if

fi (o}
[ ]
A = ¢ Osxrn—i (3.12)
0 f,
om—J x3 om—.’ Xm—3

where all off diagonal entries equal zero and f. is a factor
of fuss . For example
X o) o
A =10 xZ3y o) ] € ¢3%S(x,y)
0 0 x32ys
is in SF (3.12) because all off diagonal entries are zero, x

is a factor of x®y, and x2y is a factor of x2yS, Another

example is

3.16
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A = [O x(x+1)] € ¢3%=2(x,y)
o 0

which is in SF (3.12) because all off diagonal entries are
zero, and x is a factor of x(x+1). The solving of matrix
equation (3.1) may be aided if A can be transformed (using
unimodular matrices P’ and Q@’) into a matrix having SF. In
fact, Smith Forms have already appeared: (3.3) is a special
case where f.=1 , k £ p The main aim here is to use
SFs to solve the equation (3.11) AZ = Mb of the last
section.

To illustrate, assume that in solving NZ = Mb (derived
from some hypothetical original equation AX = b),
unimodular matrices P’ and @° have been found that give

P'a@° a SF. Thus

Nz = Mb
P‘AZ = P'Mb
P'a(R'@°'—2)Z = P'Mb
(P'a8°)(@°~2Z) = P'Mb
Letting
Y =@""27
H=P'Mb
F=P'AR (3.13
the last equality becomes
FY = H

Since F is in SF, there exists at most one nonzero entry in
each row and coiumn of F. Because F and H are known, some
entries in Y can be found by dividing the respective F and H
factors (if however a given entry of Y isn’'t compatible with

two or more equations, or if the entry doesn’'t turn out to
3.17
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S be a polynomial, then fZ = Mb has no solution Z.)

' Depending on the structure of F, there may be entries of Y
i; which can assume arbitrary values. Y is then substituted
ﬁL: into (3.13) to yield Z = @'Y , thus solving (3.11) and in
turn (3.1).

Given A ¢ ¢~ (r) , if there exists unimodular
matrices P’ ¢ ¢™*™(r) and Q' ¢ ¢"*"(r) such that
A’ = P'AR’ is in SF, then A is said to be equivalent to its
Smith Form. It has been proven [1:188] that for every

A € ¢~ (x), A is equivalent to a unique Smith Form (an

.; algorithm exists [1:192]1 which finds this). However, such
&; is not always the case for multi-dimensional r. In fact,
;ﬁ Lee and Zak [20] prove that a matrix A ¢ ¢ *"(x,y) is

' (;~ equivalent to its SF iff a certain system of linear

polynomial equations has a solution. The conditions under

ol which a matrix in three or more variables is equivalent to
its Smith Form remains an open question.

- Although the existence of a SF for a given matrix A

must be known before a search for it can begin, a method is

_2: needed which identifies the unimodular P’ and Q° which

igv vield a particular SF of A. As before, the Jones ST Method
i} can be used.

{. EXAMPLE: Find the Smith Form of the matrix (Frost and

- Storey (81)

z 0] € ¢=%3(s,2)

.........
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Begin by augmenting A with Isxs=:

s + 2 o 1 1 0 0
o s + 2 0o 0 1 o
0 0 s o 0 1
1 0 o
0 1 o
0o 0 1

Next, add —(z + s) times the third column to the first

column to get:

0 0 1 1 0 0
o s + 2 o) 0 1 0
-s(s+2) o s 0 0 1
1 (o] o
0 1 ¢)
~(s+2) 0 1
Add -s times row 1 to row 3 obtaining:
o) 0 1 i 0 o)
. o s + 2 0 (o] 1 0]
. -5 (s+z2) 0 o) -s 0 1
i 0 0o
0 1 0
-(s+2) 0 1

Finally, interchange the first and third columns:

1 0 0 1 0 o)

0 s + 2 0 0 1 0

o) 0 -5 (g+z) -s Q 1

0 0 1

0 1 0

1 0 —(s+2)
:% Since the upper left hand matrix is in Smith Form (i.e.,
\.1
F. l is a factor of s + 2z, in turn a factor of -s(s + z) and
E;S< off diagonal entries are zero)
L -
o 1 o0 o 0 o} 1
- P = 0o 1 o Q = 0 1 o
® - -s 0 1 1 0 —(s+z2)
L~ :' -'._-".'
P 3.19
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are the two unimodular (easily verifiable) matrices which

reduce A to its Smith Form. =&
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IV Solutions to Lypanov and Riccati Equations

This chapter will consider the solutions to the Lypanav
matrix equation
AX — XB = C (4.1)
and the second order Riccati matrix equation
XDX + AX + XB + C = O (4.2)
where the entries of A,B,C,D are in ¢(r). It will be shown
that solving these two equations for X hinges upon solving:
equations of the form AX = b the subject of Chapter III.
Lypanov Equation. (4.1) may be solved using tensor
products or similarity transformations. The former
approach will be addressed first because it uses the results
of Chapter III at the onset. The approach using similarity
transformations will then be presented as a lead-in to
solving the Riccati equation (4.2), whose solution relies
exclusively on these tranformations. Whichever method is
taken though, the linear equation (3.1) will demand
resolution.

Lypanov Equatign: Tensor Solution. Multiplication

between two matrices is easily extended to that of their

tensor product. Given A = [a,,] the tensor product of the
7 matrices A and B, represented by RaB, is given by [a, ;sBl.
. Unlike matrix multiplication, the number of columns in A

doesn’‘t have to equal the number of rows in B.
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Example: I+
A = [1 2 3] and B = [1 1]
4 5 64 1 2
then
AaB = [a,sBl = (1B 2B 38]
4B SB &B
) S | 2 2 3 3
1 2 2 4 3 6
= a 4 X 6
4 4 l 9 S 6 b6
4 8 9 10 6 12

It follows that if A is m X n and B is r X s, then AaB is
mr X ns. &
The next step in solving (4.1) is to identify the
solution of the equation
AXB = C (4.3)
where A, ., denotes the i 'th row of A and A, ,c its i 'th
column (the i-jth entry of A is given by a, ;s with no comma
between subscripts).
THEOREM 4.1: Solving the matrix equation
AmxnXnxpBoxa = Cmxa
is equivalent to solving the equation
Gu = ¢
where
G =AaABT , u = [X1,reeeXn, 1T s © = [C1,reeaCm,-3"
PROOF: Let A = [axs]1 , B = [fz,] ,

c

ECtJ] ’ X = [Xx_,]

Since AXB = C ,




Ax ,~XB,,c

Az, CX1.rBs,coeeXn.rBs,c17
tk:axkzl_(xkl_ﬁl_.i)]

Bk.L(akaLJka)

EelarsBuyxag) + ¢o0 Ze(azrnBsxa)
r18 (BLaXa) + e + arnlc (BLsXA)

C 311[31_1..-39_1] sen axn[ﬁlf--.ﬂpjl B ]

Ler-ssslAm,r JT

Cxy

[a! IBTJ,c .“sa a!"\BTJ'l:]
* [x;.r----xn,r‘]-r (4-4)

Since € = [Ci.reeelm.~17 is given and from (4.4), the
theorem follows. N
The following theorem is due to P. Lancaster [18]:
Theorem 4.2: Given the matrix equation
A1XB, + AzXB> = C (4.5)
where A arem X m , B aren X n 4, X,C arem X n (with X;

and Cx the rows of X and C respectively), (4.5) is equivalent

to solving the equation Gx = c where

G = A:aB,™ + AzaB-"
X = [xll'IXm]T
c = [Cx---Cm]T

Proof: Similar to that of Theorem 4.1. B

The restriction on square Ay and By in Theorem 4.2 is
easily modified to include rectangular matrices. With this
madification, Thearem 4.2 allows far the solution of the
Lypanov equation (4.1) which is a special case of (4.5) with
B, =1 and Az = -1. Once a given Lypanov equation has
been reduced to an equation of the form AX = b using
tensor products, the results of Chapter 111 can be applied to
this latter equation.

Example: Solve the Lypanov equation

AX + XB = C = AXI + IXB
4.3
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.......................

where
stz s -z -5
zZ s—-2 -Zz-s s—-2

sz s=
c=[
252=2z22-g2 452~-222-3s5=2

Y F4
X = [ (4.6)
v w

The first step is to reduce the given Lypanov equation
to the form Gx = ¢ so that Theorem 4.2 may be used. Thus

G = Aal™ + IaBT =

r5+2 S 1 0O 1 © -2 -z-s
L 2 S5-2 0O 1 o 1 -s s~z

rs+z O s 0 7 -z -z-s O o
) 0 s+z 0 s + -s s~z O o =
Ne z O s-z O 0 O -z -z-s
L O z 0 s—-zd 0 0 -s s-2
-3 - 8 o]
-5 2s 0 s
- 0 g-2z -—-z-s
0 4 -5 -25-22
Let x = [y 2z v wl™ and
c = [sz s= 25%-222-g2 A5z-222-352]17, Thus the
solution

< [0

to the given Lypanov equation is the solution to the

.. linear equation

-,

-,

-

b -
#l
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Depending on the nature of the G matrix obtained using
tensor products, the given Lypanov equation may or may not

be easily solvable. For instance, if G cannot be reduced to

the form

however, finding the Z°'s satisfying the consistency
condition (3.11) AZ = Mb may be difficult. In any

event, the use of tensor products creates a large matrix 6,

Lot maut ard Al Mg e oS g e 8 el A Ko Rl dig- kg g0 i mae B S A el s o8 SaB fud 2iB and G 8 B caf 4.l 108 rod agk ol a0l l."

-2-s s 0 Y s2
2s 0 s z = s=
0] s-2z -z-s \' 25=2-2z2=2—g2
z -5 -2g-2z w 452-222-3g=

{(3.3), one then tries for form (3.8). Here

thereby compounding calculations.

The second approach to solving the Lypanov equation

(4,1) uses similarity transformations. Although this method

may not explicitly identify the solution to (4.1), it will

identify a set of matrices within which the solutions of

(4.1) will be found.

Lypanov Equation: Solution via Similarit

Transformations. The second approach to solving (4.1)

proceeds from a few simple observations unrelated to solving

a matrix equation. Given an n X n matrix X and 1 = I.x~ the

matrix

I X
E = [ (4.7)
o 1

always has det(E) = 1 despite the nature of X (this follows

from the permutational definition of a determinant (2.13).

Since E is unimodular, it has the unimodular inverse
4.5




which is verified below:

I X I =X 1 + X0 =IX + XI I O
SR N R I o
0o I o I oI + IO -0X + I= o I

(E'E = Izhx=~ likewise follows).
The next observation uses the matrix
A C
R = [ ] (4.9
O B

where A,B,C are all nXn matrices:

ERE-* = [I X] [A C] [I —X] = [A C+XB] [I —X]
0 1 0O B o I 0o B o 1
= [A -AX + C + XB] (4.10)
- o B
‘e The above two observations can now be brought together
to solve (4.1): the 1-2'th entry of ERE-* above is itself a
Lypanov equation. If it equalled zero, then X would be a
solution to the equation
-AX + XB+ C =0 or AX - XB =C
E; which is of the form (4.1). The following theorem due to
:: Jones (111 has now been proven:
iﬁ Theorem 4.3: If X is a solution to the Lypanov
;; equation
[ J

ax: AX - XB = C

where A,B,C,X ¢ ¢"*" (") then

---------------
.........
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SO A C A O
Lo R = [ is similar ta R’ = (4.11)
{* O B O B
- Proof: previous discussion. &

The fallowing mare powerful theorem was proven by Roth (301
for matrices whose entries are complex numbers:

i Thegrem 4.4: If A,B,C ¢ ¢~*", then AX — XB = C has
- a solution X € ¢~*" if and only if R and R’ in (4.11) are
{; similar.
oY Proof: See [30]. 1

K Although Theorem 4.3 is the core result leading to a
':; solution of (4.1), the final assault upon (4.1) will use
e
:&: polynomials of a matrix. For this reason, the following
~?T theorems are presented.
{' V; Theorem 4.5: Let A,B be n X n matrices such that B—?
;; exists. Then for n € Z+*
‘ (BAB—*)» = BA~B-3: (4.12)
‘ Proof: Inductive reasoning will be used. (4.12) is
ﬁi trivially true for n = 1. For n = 2,
~.
- (BAB~*)2 = (BAB—') (BAB—*) = BA(B—:B)AB—?
] = BA(I)AB—* = BA=p-:
. and (4.12) is again true. Assume (4.12) is true for n = k
o Thus
o (BAB—1)« = BA%B-1
@
ij and so
(BAB~*) <~ = (BAB~!)“(BAB~*) = BA%B-! (BAB—1)
L = BA*(B-1B)AB—? = BAx+1p-—1
P
r, . and so (4.12) holds true for k + 1 and therefore for all
L
"’:..j' 4.7
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N S positive integers. B
2 ‘ Theorem 4.6: Let f(x) be a polynomial in the

'*2 variable x. Let A,B be n X n matrices such that B~* exists.

fi Then
~‘L f(BAB~*) = B f(A) B—*
-]
o Proof: Let f(x) = ac + Dicm1.r axx™ Then
lhz f(BAB~') = aol + Taw(BAB~*)< = (from Theorem 4.5)
= = aoBB~' + Ta.BA<B—?
{ = BaoB~* + B (Za,.A%) B-?
. = B (acl + ZaxA<) B—*
o =B f{(A) B~* B
= Theorem 4.7: Let
4
A O
- B C
.j A,B,C nXn matrices. Then for K ¢ Z+
"B A< 0
{” ¢ R< = [ (4.13)
- * C~
* an expression in A,B,C.
Proof: Inductive reasoning will be used. (4.13) is
trivially true for i = 1, where # = B = OA + 1B +0C
f For i = 2 ,
. A 07 TA O A= 0
5 Rz = [ = [
S B c B c BA+CB C=
L and (4.13) holds true again. Let (« 13) be true for n = k
-\.‘ Then
o A< 0 A o Ax+1 0
R+t = R“R = ] I ) [
* Cx B c * Cr~r
5: - and thus (4.13) is true for all positive integers. @i
.:"\.'.
°

N S
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Theorem 4,8: Let
A O
R 2=
B C
A,B,C nXn matrices. If £(x) is a polynomial in x, then

f(A) 0
f(R) = [ ] (4.14)
» £ (C)

# an expression in A,B,C

Proof: Inductive reazoning will be used. Let

f(X) = 80 + Luami,.nawx™ For n = 1, f{(R) = ao + a,R =
ado [I O] + ai A 0] = aocl + a:1fA 0]
0 I B C [ a,B aocl + a,C]
= [f(A) 0 ]
* £<(C)
where
* = a,B = a,B + 0A + OC

and so (4.14) holds.

For n = 2, f(R) = acl + a:R + a=xR=

= ao [1 o] + a, [A o] + a- [Az 8%] (from Theorem 4.7)
*

0 I B c
= [aol + a;A + azA= 0
* acl + a,C + azcz]

[f(A) 0 ]
* £ ()

and (4,.14) remains true. Let (4.14) be true for n = v
If £,(x) = [ ao + Bicmi,va@kX* ] and
fix) = F£,(X) + aL,1xv*2 then

f(R) = [f;(A) o ] + a.+i1Rv"?
£1(C)

*
= [f,(A) 0 ] + ave: [Av+2 0
*  £.(0) [* t:v+=]

4.9
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'fx(A) + av...,_A""" O
* f.(C) + a,,ﬂ(:vﬂ]

[f(A) 0o ]
* £ Q)

and so (4.14) is true for all positive integers. B

One more theorem remains to be cited before the assault
on (4.1) can begin. The Hamilton—-Cayley Theorem will permit
the identification of a pair of linear equations whose

common solutions will contain those of (4.1).

Theorem 4.9 (Hamilton-Cavley): Given A an nXn matrix

and F(y) = det(A -~ pI.x~) the characteristic equation of A,

then
2(A) = O0nxn

Proof: see Nering [26:100] 0

The tools are now in place with which to solve (4.1).
The following theorem is due to Jones [111]:

Theorem 4.10: Given the Lypanov equation

AX - XB = C A,B,C € ¢~*" (1) (4.15)

let R and R’ be defined as in (4.11) and f, the

characteristic equation of A. I¥f

Uu M
fa(R) = [ (4.16)
vV N
then
U+ XV =20 (4.17)
M+ XN =20

Thus a solution to (4.15) will be found among the common
solutions of the pair of equations (4.17).

4.10
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Proo : From the discussion preceeding Theorem 4.3, it

was seen that

ERE—* = [I x] [ A C [I —X] = A O = R’
0 1 0O B 0 I [0 B
faor X satisfying (4.15). By substitution,
fa(ERE-*) = $a(R°) (4.18)
From Theorem 4.8,
falR) = [fA(A) 0 ]
* fa(B)
= [0 0 (Hamilton—-Cayley Theorem 4.9)
* fa(B)
From Theorem 4.6
fa(ERE™*) = E fa(R) E-* = [1 X U M I X
O 1 [V N o] I]
= [u+xv M+XN] [1 —x]
Vv N (o) 1
= [U+XV —(U+XWMI X + (M+XN)] (4.19)
Vv —VX+N
= [0 0 ] (from (4.18)) (4.20)
* fa(B)

Since two matrices are equal iff respective entries are
equal, the 1-1th entries of (4.19) and (4.20) imply
U+ XV =20 (4.21)

and the 1-2th entries imply

O = =(U + X)X + (M + XN)
= 100 ¢ + (M + XN) (from (4.21))
=M + XN

Thus a solution of (4.15) will satisfy the pair of equations
(4.17). #
The example used to illustrate the tensor solution to

(4.1) will serve to illustrate Theorem 4.10:
4.11
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Example Theorem 4.10: Solve the Lypanov equation

AX + XB = C (4.22)
= AX - X(-B)

where

s2 s=2
28=2=2z=2—gz 452-222-3g2

From (4.11),

R =[A Cl = rs+z s sz s=
0o -B 2 s~z 25=-D22-g2 45z-22=-3s=
o] o] 4 S
0 0 Z2+s z-s

Next, find fa(p), the characteristic equation of A.

fa(y) = det s +2z2 — s
[ z s -z - p]
= (5+2-)) (s—2—-M) - sz
= 8% - 82 - sP + 25 -2% -z9 —YPs +yz + P2 - gz

S - 82 - 22 + P2 - 2gyp
Now evaluate fA(R) (this was done using the program in
Appendix A, a BASIC program performing operations on

matrices whose entries are multivariate polynomials):

fa(R) O O -2z + 385 55 + 782z - 2gz=
0 O 98z% - 58 -2z3 + 2522 25z2 + 8s> - Bg=2z
O O I 282 - 252 -382 + 252
o o0 -8z ~ 382 + 2z= Ss2 - 4s2
=[U M
v N

According to Theaorem 4.10, the solution to (4.22) will be

found among the common solutions to the pair of equations

4.12
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. U+ Xxv
S M+ XN =0 (4.24)

o (4.23)

Since U =V = 0, (4.23) doesn’'t contribute to the solution.
So the search restricts itself to solutions of the equation

M= -XN or

[—szz + 3s5 -9s= + 782z - 2gz=2
9522 - 55 -2z + 2g2; 2522 + 85> - Bszz]
= w X -252 + 2sz 3= - 2s2

[y z] [sz + 352 - 2z=2 -95=2 + 452]

However, in order to apply the techniques of

Chapter III, one must have an equation of the form
AX = b

It is an easy matter to convert (4.24) into the form of
(3.1) by abserving that M = =-XN implies MT = —NTXT This
latter equation is in the form (3.1), and the techniques of
Chapter III can be applied to this transposed equation. @&

It is possible to further restrict the set of equations
within which the solution of (4.135) belongs:

Theorem 4.11: Given the Lypanov equation

AX - XB

C A,B,C ¢ ¢gr>x~ ()
let R and R’ be defined as in (4.11) and fs= the

characteristic equation of B. I+
u ™
fa(R) = [
V N

N~V

then

=0 (4.25)
=0

Thus a solution to (4.15) will be found among the common

4.13
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solutions of the pair of equations (4.23).
Proof: The proof is similar to that of Theorem 4.10.

From the discussion preceeding Theorem 4.3, it was seen that

ERE-* = [I x] A c] ) = [A 0] =R"
0 1 [o B [o I 0 B

for X satisfying (4.15). By substitution,

fs(ERE-2) = fu(R") (4.26)

From Theorem 4.8,

fo(R’) = [fg(A) 0
* fa(B)]

[fa(A) 0] (Hamilton—-Cayley Theorem 4.9) (4.27)
* 0

From Theorem 4.4

fu (ERE—1)

E fe(R) E-* = I X [u M] ) S ¢
o I vV N 0 I

[U+XV M+XN] [I —X]
v N 0o I

[U+XV =(U+XV) X + (M+XN)
\ -VX+N

[U+XV X{(N-VX) + M - UX] (rearrange 1-2th
v N - VX entry) (4.28)

[fa(A) 0] (from (4.27)) (4.29)
* 0

the 2-2th entries of (4.28) and (4.29) imply
N-VX =0 (4.30)
and for the 1-2th entries,

0o X{N-VX) + M - UX

ox + (M - UX) (from (4.30))
M - UX

Thus a solution of (4.15) will satisfy the pair of equations

(4.25). N

..........
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The example for Theorem 4.10 will serve to illustrate
Theorem 4.11:

Example of Theorem 4.11. From (4.22) begin by finding
the characteristic equation for

=l L

f-m(p) = det(-B - pI) = det [z—p s
zZ+S z—s—y]
= (2-u) (z—=s5-9) - s{2+3)
=2% - 25 -2 - Pz + Ps + P2 - 5z - s=

(22 - 82 - 252) + (5 — 22)) + p=

Using the program in Appendix A, f_-s(R) =

s=2 352-25z —2522425%z24+3sS S5s22z-255-25z=
=222435z 4z2-b652+52 |-G5522+2z5+55+g2= -125z224+42354+1052z2—-g=
0 0 0 5 -
0 0 0 o}
[V N
VvV N

The pair of equations which need to be satisfied are

N ~-VX =20 (4.31)
M-UX =0 (4.32)

(4.31) doesn’'t contribute to the solution, and so the
solution to (4.15) will be found in the solution space of

(4.32) M = UX or

~3822+225+s 4522 —12szz+423+1oszz-53]
= 5= 3s=2-2s2 w X
[-222+3sz 422—6sz+sz] [y z] | |
To summarize, given the Lypanov equation
AX - XB =C A,B,CyX € ¢m>x" (M)
and
4.15
- [ TP R S "



-~ A C
R = [
O B

and fa(p), fe(pP) the characteristic equations of A and B
respectively, then X will be a common solution tao the pair

of equations

M = -=XN
M° = U'X
where
fa(R) =[u n] and fa(R) = [U' M']
vV N vV’ N’

Riccati Equation. Attention will now be turned towards
(4.2), where A,B,C,D,X € ¢~X%"(r) As with the Lypanov
équation, a few insights (not necessarily connected with
solving the Riccati equation) will serve to motivate

iﬁ) the techniques used to solve (4.2).
If X is an n X n matrix and I = I.xn, then the matrix
X I
E = [ ] (4.33)
I O
always has a determinant equal to -1 (this follows from the
permutational definition of the determinant), and is thus

uniwodular. E’s unimodular inverse is

o I
E' B [ ]
I =X

skl L [ O Il H A+

and E'E = 1 likewise follows.

Given the matrix

A T A S T N W Y
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A B
R = [ (4.34)
cC D

where A,B,C,D are nXn matrices,
[x 1] A a] o I ]
I O [C D [ I =X

[XA+C XB+D] o I]
5 | [1 X

ERE-?

[XB+D XA+C-XBX—DX]

B A-BX
= [XB+D -XBX—DX+XA+C] (4.33)
B A-BX

It can be seen that the 1-2th entry of ERE-* is in the form
aof the Riccati equation (4.2). However, to get the 1-2th
entry to agree exactly with (4.2) which is

XDX + AX + XB + C = O
= —XDX - AX = XB - C (4.36)

it will be necessary to modify the R matrix (4.34). The
madification is implemented by comparing the form of the
1-2th entry of (4.33)

-XBX - DX + XA + C (from R)
with the the second equation in (4,.36)

-XDX - AX - XB - C (original)
By matching the coefficient matrices A,B,C,D for like

expressions involving X, the suggested change is from

A B -B D
R = { to R = ] (4.37)
C D -C A
So with this new form of R,
ERE-* = X -B D] I
[I ] [—C A [I -X
.17
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= [-XB—C XD+A] [0 I]
-B D I =X

= [XD+A —XB—C—XDX—AX] (4.38)
D -B - DX
If X is a solution of the 1-2th entry, then
-XB ~ C — XDX - AX = 0 = XDX + AX + XB + C
and X is a solution of (4.2).
The next insight stems from the procedure followed in
solving the Lypanov equation
AX — XB =C
In Theorems 4.10 and 4.11, a solution to the Lypanov
equation was found among the solutions to the pair of
equations (4.17)

U+ Xv
M + XN

o
0

(derived from using the characteristic equation of A fa) and

(4.25)
- 0

X
X o

N’ v
o I ¥
(derived from using the characteristic equation of B fa).
Although only one equation from each pair turned out to be
significant in solving (4.1), the original pairs point to
the solution of the Riccati equation. To obtain (4.17),
notice that if

[1 x]u n]s[u+xv n+x~]
o Iilv N Vv N

is set equal to
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then matching the top rows will yield (4.17). The matrix

6 1]

was picked because it helped generate the Lypanov equation

in (4.10). As before,
fa(R) = [u M] , R = TA c]
vV N O B

The development of the pair (4.25) is similar: set

[U M [I -X] = [ u -Ux + M]
v N] o 1 V -VUX + N
equal to
[U O] where fa(R) = [U M]
Vv 0 V N

to obtain the pair (4,235).

The same approach will now be used to generate
solutions to the Riccati equation. Let f(x) be any
polynomial in the indeterminate x with degree 2 1.
From (4,37)

R

[ &l
-C A
Let f(R) = [U M] (4.39)
v N
Now the crucial step: as if developing the pair (4.17), let
X be such that
Ef(R) = [x 1] u M
I O [v N
= Xu+v XM+N] = (o) 0] = S
[ u M -[U M (4.40)

That such an X exists is motivated by the previous

discussion concerning the Lypanov equation. From (4.40)
4.19
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f(R) = E~*S or

f(R) = [u M = [o 1][0 o] = [u M] (4.41)
Vv N] I X U Ml -Xu -XM

Because f(x) is a polynomial in x, xf(x) = f(x)x and so fram

(4.41)

Rf(R) = [—B D] u M ] = ~-BU-DXU -BM-DXM| (4.42)
-C A —Xu —-XM [ —-Cu-axu —CM-AXM

and

f(R)R = u M ] -B D] = -UB-MC ubD+MA (4.43)
-XuU -XM [—C A XUB+XMC —XUD-XMA

Since (4.42) and (4.43) are the same matrix

BU + DXU = uB + MC (4.44)
BM + DXM = -—-UD - MA (4.45)
CU + AXU = -XUB - XMC (4.46)
CM + AXM = XUD + XMA (4.47)

Within the above four equations lie two solutions to

the Riccati equation (4.2). From (4.44) and (4.48),

CU + AXU = =X(UB + MC) = —-X(BU + DXU) = —-XBuY - XDXU
and so
CU + AXU + XBU + XDXU = ©O
= (C + AX + XB + XDX)u (4.48)

If det(U) is a nonzero complex number, then U-?* exists and
from (4.48)

XDX + AX + XB+ C =0
and X satisfies the Riccati equation (4.2). The second
solution uses (4.45) and (4.47):

€M + AXM = X(UD + MA)

X(-BM — DXM) = —-XBM -~ XDXM
and so

CM + AXM + XBM + XDXM 0= (C + AX + XB + XDX)M

4.20
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If det(M) is a nonzero complex number, M—* exists and so
XDX + AX + XB + C = 0
another solution to (4.2).
The following theorem due to Jones has now been
proven:
Theorem 4.12: Given A,B,C,D ¢ ¢~*~(r) and f(x) a

polynomial with degree :z 1, let

R = r-B D] and f(R) = [u n]
[—c A vV N
If X € ¢~*~ (") satisfies
XU +V = 0 (4.49)
XM + N =0

and det(M) ¢ ¢ - {0}, then XDX + AX + XB + C = 0. Also,
if X € ¢~*~(n) satisfies the pair (4.49) and
det(U) € ¢ - (0O then XDX + AX + XB + C = 0.

Proof: previous discussion. R

A third solution exists for (4.2) but requires a
different setup akin to developing the pair (4.25). Let
R be as in (4.37) and f(R) as in (4.39). Let X satisfy

f(R) E = [3 H] [0 -i] = [M U—MX]

N I N V-NX
= M o] (4.50)
[N )

That such an X exists is motivated by the development of the

pair (4.235) for the Lypanov equation. (4.350) implies

o F(R) = [u n] = [n o] [x 1] = [MX n] (4.51)
(- vV N N ol lr o NX N

s

(o Since Rf(R) = f(R)R

°
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< RF(R) = -B D] [Mx n]
T [-c Al LNx N

&3

{ - [-an + DNX  -BM + DN} (4.52)
- -CMX + ANX  —-CM + AN

3V and

o f(R) R =

\ [ MX n] -B D
! NX N [—c A]
= r-MXB - MC MXD + MA (4.53)
[-NXB - NC NXD + NA

{- Equating last rows of (4.52) and (4.353)
- NXB + NC = CMX — ANX (4.54)
NXD + NA = —-CM + AN (4.55)

It follows that

’ NXB + NC = (CM - AN)X = (-NXD - NA)X
% = =NXDX - NAX
) and so
{ : {.- NXDX + NAX + NXB + NC = 0 = N(XDX + AX + XB + C)
‘ If det(N) is a nonzero complex number, N—* exists and so
2 XDX + AX + XB + C = O
;m and a third solution to (4.2) has been found and thus
- Thegrem 4.13: Given A,B,C,D € ¢~*"(r) and f(x) a
;; polynamial with degree 2 1, let
,3 R = [—B D and f(R) = [u M]
- -C A v N
~ I X € ¢"x(r) satisfies
Ei U-MX=0 (4.56)
° V-NX=0
: and det(N) ¢ ¢ - (0}, then XDX + AX + XB + C = 0.
Proof: previous discussion. @
;' The next theorem presents a companion Riccati equation

4,22




Pakih-adg ook sint Shud Bive ari gl Siose S-S S-muul g ghed tundh e ai B ot ety - & 10~ st i e - et Sk it [N e At St A R R ta s S St g Sadh Bave bas. bar gend e pae

to that of (4.2) given a particular polynomial f(x):
Theorem 4.14: Let f(x) be a polynomial of degree : 1
and
XDX + AX + XB + €C =0 A,B,C,D,X €& ¢~>~(r)
with R and f(R) given by (4.37) and (4.39). Then
XMX + NX - XU - vV =0
Proof: It has already been shown that

E = [X I] and E' = [O 1
I 0 I -X

are both unimodular and inverses of one another. From

(4.38) and the given,

ERE-* = XD + A 0
[ D -B - DX]
From Theorem 4.8,
f (ERE—*) = [f(XD+A) 0 (4.57)
* f (-B-DX)

Ef(R)E—2 (from Theorem 4.6)

BB EEA N

=[xu+v XM+N] ) 1]

U M [1 -X

= [xn +N XU +V = XMX ~ NX] (4.58)
M U - MX

Equating the 1-2th entries of (4.57) and (4.358),

XU +V = XMX = NX = 0 = XMX + NX = XU -V |

Lacaiay and ity il - oc |




V Solutions of the Third Order Riccati Eguation
XAXBX + XCX + XD + EX + F = Q

This chapter will discuss some of the approaches which

may yield solutions to the third order Riccati equation
XAXBX + XCX + XD + EX + F = 0 (3.1)

where A,B,C,D,E,F,X ¢ ¢"*"(r), r the tuple of variates. The
approach for (3.1) will be less general than that for the
second order Riccati and Lypanov equations because of the
form of (5.1). Difficulties stemming from this form are
discussed in the n... chapter.

One approach to solving (5.1) is akin to that taken for
the second order Riccati. Let A,B,C,D,E,F be known matrices

in ¢°%*"(r) and

C D
and

f(R) = [u M
V N

where f(x) is a given polynomial with degree :> 1. As seen
previously, if X ¢ ¢~>x~(r),

[1 x] [u n] [I -x] = [u + XV =(U + X)X + (XN + M)]

0 1 V N (o) 1 v N - VX

Suppose U + XV = 0 (motivated by its appearance in
so0lving for the Lypanov and second order Riccati equations).
Thus
u = -=xXv (5.2)

Because f(R) is a polynomial in R, R and f(R) commute. From

(5.2),

S
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f(R) = [—xv M
VvV N

It follows that

Rf(R) = [A B] [—xv M] = BV AXV AM + BN]
cC D V N bv - CXxV CM + DN

and

f(RIR = [-XV H] [A B] = [MC XVA MD XVB
vV .N € D VA + NC VB + ND

Equating the first columns,

BV - AXV
Dv - Cxv

MC - XVA (5.3
VA + NC (5.4)

VA appears in the right hand sides of (5.3) and (5.4). If
MC in (5.3) involved XNC, then a substitution from (5.4)
could be made in (3.3). Accordingly, let

MC = =XNC - ¥ (5.9)

Then (5.3) becomes

BV - AXV = (=XNC - §) - XVA
= =X(NC + VA) - L
= =X(Dv - CXV) - & (from (5.4))
= -XDV + XCXV - &
ar
XCXV = XDV + AXV - BV - T = 0 (5.6)

Because all terms except T end in V, let
Z=e;V
(5.86) then becaomes

(XCX - XD + AX - B - e,)V =0

1§ det(V) is a complex, non-zero number (easily verified
since f(R) is known), then the inverse of V exists and so
XCX - XD+ AX - B —-e, =0 (5.7)

Since solutions of the third order Riccati equation are

py | P Ry
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)
'

= ) 5.2

[

Ahhne Pl
.,




Rt as g s dlattod

Ak

r

:% - sought, let e, = -XEXFX. (3.7) then becomes

N
r XEXFX + XCX + AX — XD - B = 0 (5.8)
5; and X is a solution to this third order Riccati equation.

3 However, since e, = —-XEXFX and £ = e,V, it follows that
‘i L = -XEXFXV and from (5.2), L = XEXFU. From (5.5) it
% follows that

- MC = -XNC - £ = —XNC - XEXFU
{. To summarize, if

N R = A B] . f(R) = [u M
o cC D V N
3f det (V) a non-zero complex number and X satisfies the pair of
q

B~ equations
5 Uu+Xxv =0
K\ —-XEXFU ~ XNC = MC (5.9
"N -
{ ‘f; then X is a solution to the third order Riccati equation

, XEXFX + XCX + AX — XD - B = O (5.10)
v 1f det(FU) is a non—-zero complex number, then (5.9) can be
reduced to a second order Riccati equation of the form

% solved in the previous chapter.

- Another solution to (5.10) can be gleened using the

. above approach. Let XN + M = 0. Then

- Rf(R) = A B] [U —XN] = [AU + BV BN - AXN (5.11)
" C D v N CuU + Dv DN - CXN

. and

|

f f{(R)R = [U -XNl [A B] = [UA - XNC uB - XND] (5.12)
b V- N € D VA + NC VB + ND

i: Equating the second columns of (5.11) and (5.12),

e .. -AXN + BN = UB - XND (5.13)
-CXN + DN = VB + ND (5.14)
- 5.3
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Noticing that ND appears in the right hand sides, let

UuB = -XVB + T (5.1

Then (3.13) becomes

-AXN + BN = (-XVB + E) - XND
= =X(VB + ND) + L
= =-X(DN - CXN) + L
= =XDN + XCXN + T (5.16)
and so
XCXN — XDN + AXN - BN + £ = 0O (5.17)

Let T = esN. Then (5.17) becomes

(XCX — XD + AX — B + e;)N = 0
If det(N) is a non-zero complex number, then N has an
inverse, and so

XCX — XD + AX — B + e, = 0 (5.18)
If ex. = XEXFX then

XCX — XD + AX = B + XEXFX = 0
and another solution to the third order Riccati has been

XEXFXN = —-XEXFM. (5.15) then

found. Since I = e,N, L

becomes

UB = -XVB - XEXFM
Thus, if X is a common solution to the pair of equations

O= XN+ M
UB = -XVB — XEXFM

and det(N) is non—-zero complex, then
XEXFX + XCX + AX — XD - B = O
Another approach to solving (5.1) extends the solution
via similarity transformation used in the matrix equations

presented herein. Though this approach fails to generate
5.4
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sets of equations (whose comman solutions satisfy (5.1)), it
does present relations among the coefficient matrices for a
restricted case of (5.1).

Let A,B,C,D,E,F,G,H € ¢"*~ (). Then given X € ¢~*" (M,

6 R T E o6 T

[E+X6 F+XH] [A+XC —AX—XCX+B+XD]
H

G Cc D-CX
= @
By multiplying these matrices, the following entries of §
are obtained:
1-1: EA + EXC + XGA + XGXC + FC + XHC (5.19)
1-2: =XGBXCX - X(GA+HC)X - (EA+FC)X + X(GB+HD) +
(EB+FD) + (EXD-EXCX+XGXD) (5.20)
1-3: GBGA + GXC + HC (5.21)
1-4: GB + GBGXD - BGAX - GXCX + HD ~ HCX
Of the entries, the only one in which the “cubic” of the
third order Riccati appears is (5.20), that is, XGXCX. If
it weren‘t for the last term in paranthesis in (5.20), the
form of (5.20) would be the same as that of (5.1). In order
to eliminate this last term and preserve the structural

integrity of (5.20), let D = E = 0. It follows that

8§ = XGA+XGXC+FC+XHC —XGXCX—X(GA+HC)X—FCX+XBB] (5.22)
GA+GXC+HC GB-GAX-GXCX-HCX

If X were a solution to §(1,2), then X would be a solution
to a third order Riccati equation of the form

XAXBX + XCX + XD + EX = O (5.23)
which is a special case of (5.1). Ffrom the remarks

preceeding (5.19), it follows that (since D = E = 0)

5-5
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g = [I X] [0 F] [I X] [A B] [I —X] (5.24)
o 1 G H 0 I € o 0] 1

= [XGA+XGXC+FC+XHC 0 ] (5.25)
GA+GXC+HC GB-GAX-GXCX-HCX

Multiplying the three middle matrices in (5.24),

[o F] [1 x] A B] = [FC 0 ] (5.26)
G H o 1 [c 0l GA + HC + GXC GB

= ﬁ,_
If f(x) is any polynomial of degree 2 1, then from (5.24)

and Theorem 4.6,

(3 = [1 x] £(8,:) [1 —x]

and from Theorem 4.8

£(%) = Lé x] [f(FC) o) ] [1 —x] (5.27)
I * f (GB) 0 I
= [ f (XGA+XBXC+FC+XHC) 0
»* £ (GB-BAX-GXCX-HCX)

Since f(§) and f(3.) are similar matrices, they have the
same determinants. From the permutational definition of the

determinant (2.13),

det(f(g)) = detlf(XGA+XGXC+FC+XHC)1 =
det[f (GB-GAX-GXCX-HCX)1 (5.28)
and
det (f(3.)) = detlf(FC)] * det(f(GB)] (5.29)
and thus
detl{f(FC)] # det(f(GB)] = det[f {XGA+XGXC+FC+XHC)Y]1 *

det [ (GB—GAX—GXCX-HCX) 1
The following theorem has now been proven:
Theorem S.1: Given A,B,C,F,G,H ¢ ¢"*~ (1) and
X &€ ¢"*"(r) a solution to

5.6
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=XGXCX-X (GA+HC) X-FCX+XGB = O

then
det[f(FC)1 * detLlf(GB)1 = det[f (XGA+XGXC+FC+XHC) 1 *=
det[f (GB-GAX-GXCX-HCX) 1
Proof: previous discussion. B
Theorem S.1 may be extended to a Riccati equation of
the form

XA1XA=X + XA=X + AxX + XAs = O (5.30)

To get this equation in the form (of the given in
Theorem 5.1)
=XGXCX-X (GA+HC) X—FCX+X6B = 0

equating coefficient matrices is done. Thus

A, = -G (5.31)
Az = C (5.32)
As = —(GA + HC) = A,A - HA= (5.3
As = -FC = -FA: (5.34)
As = GB = -A;B (5.35)

Since G and C are readily known, it remains to determine
A,H,F and B. From the above equations, one may have
considerable latitude in choosing A,H,F,B. From (5.35), B
satisfies the equation A,;B = -As. Likewise, F satisfies
the equation FAz = -A,. Lastly, A and H satisfy the Lypanaov
equation (3.33)

A= = AA - HA=

By proper choice of A,B,F,H, the challenge of finding

solutions to (5.30) via Theorem 5.1 may be made easier.




VI Conclusions and Recommendations

This paper sought the solution X to four types of
matrix equations: the linear equation
AX = b
the Lypanov equation
AX - XB = C
the second-order Riccati equation

XDX + AX + XB + C

W
o

and the third-order Riccati equation

XAXBX + XCX + XD + EX + F = 0
where the entries of all matrices are restricted to being
multivariate polynomials over the complex numbers. The
method of solution involved two phases:

1. identify a similarity transformation on a matrix I
in which is embedded the coefficient matrices of
the above equations. The transformation gives a
matrix whaose entries include the equation being
sol ved.

2. identify a polynomial which, when its argument is
the matrix Z in (1), gives a matrix whose entries
vyield pairs of linear equations. The common
solutions of these pairs of equations will contain
those of the given matrix equation. The choice of
polynomial may yield different solutions.

Since the search for solutions ends in solving a linear
equation, a method was presented which may identify the
general solution of the given linear equation. The method’'s
success depends on if the matrix A in AX = b is reducible to

a Smith Form. The similarity transformation of (1) is given

by E LT E-* where E equals

6.1
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( (which is unimodular) and T for the Lypanov equation equals

A c]
0O B

and & for the second order Riccati equals
3 [-B D]
- -C A

The third order Riccati presented difficulties because its

( form wasn’'t adaptable to the method of similarity
transformations. Nevertheless, a transformation could be
done which might yield some solutions. When successful, the
solution to the third order Riccati was a common solution to
a linear and a second order Riccati equation. The
polynomial in (2) can assume any form and when its argument
is g,

£(Z) = [U M ’ (6.1)
vV M

i The submatrices UM,V,N vield pairs of equations which
depend on the matrix equation being solved. These pairs in
turn yield solutions of the original matrix equation.

Recommendations. The biggest challenge is also the

TELELTL T e
P SO A

central caoncern: develop the mathematical theory which will

". ‘.- {- .‘- "l "l

identify whether or not a given matrix, whose entries are

-

multivariate polynomials, is reducible to Smith Form.

-

Though the answer for the two-variate polynomial case is
known, the three or more variate case remains an open
¢ question. It’'s felt that this challenge will involve

6.2
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creative work involving number theory, abstract algebra, and

matrix theory. Once the theory identifying the conditions
under which reducibility to Smith Form is known, the next
hurdle will be to develop a computer algorithm performing
the reductions (the Smith Form may not be unique). The
papers [8]1 and [20] give approaches to the two-variate case,
and the papers [23]1 and [33] give insights dealing with the
"computer programming algebra" of matrix forms and
polynomials. Perhaps there is an underlying linear
programming or network formulation to the Smith Form
reduction.

In solving the Lypanaov and Riccati equations, it was
necessary to assume the existence of the inverse to one or
more of the submatrices in (&.1). Of course, (4.1) depends
on the polynomial f(x) chosen, which in turn dictates the
types of solutions found to the original matrix equation.
Research needs to be done into the types of polynomials
vielding one or more invertible submatrices of (4.1).
Perhaps there are equivalence classes of polynomials. Or
families of polynomials. Maybe there is no structure. Or
perhaps there is a "minimum"” pelynomial which (in some way)
generates all polynomials yielding invertible submatrices.
Again, a knowledge of abstract algebra may prove valuable:
much literature dealing with polynomial structures is
couched in abstract algebraic terms.

Much effort was spent in finding the "proper embedding"

6.3
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for the third order Riccati equation. Disappointingly

limited success was realized. To see what is meant by

o
' ‘ll
. PN

"pnroper embedding", notice that in

1 x] [A B] [I -x] = [A+XC -AX—XCX+B+XD]
[o I cC D (o} 1 c -CX + D

! a second order Riccati equation is found in the 1-2th

e

-1,

position of the matrix on the right. If €C = 0, then this

P s
e e e

equation becomes the Lypanov. Thus the Lypanov and second

g

{- order Riccati equations are "embedded" in the matrix on the
right, which in turn comes from the similarity

T; transformation on the left. Since this approach has proven
s0 successful in generating linear equations whose solutions
are those to the Lypanov and second order Riccati equations,

; - it is natural to extend the similarity transformation to
{ ‘y' handle the third order Riccati equation.
“ Unfortunately, this is more easily said than done.
Since the third order Riccati equation

XAXBX + XCX + XD + EX + F = 0 (6.2)

has six coefficient matrices, the above approach would have
N to be modified to handle these six. As it stands, it is
geared to the four coefficients of the second order Riccati
equation. Is it possible to work with matrices which are
two sub-matrices deep and wide, or is it necessary to go to
. higher order matrices, perhaps three submatrices in

‘j dimension. If so, what would the unimodular matrix be that

B
5]

effects the similarity transformation? 1Is the restriction

LRy JURN

of unimodularity unduly restrictive, mandatory though it
6.4
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seems? Also, the first term XAXBX of (46.2) presents a
challenge: how to introduce the middle X from the
transformation E T E-* while hopefully embedding a third
order Riccati equation in the resulting matrix of
transition. Perhaps a different type of transformation
needs to be done. Instead of a single transform, a string
of transforms may be the answer, for example

E1Z.Ez22E
where the T, are matrices whose entries include the
coefficient matrices, and the E; contain the solution X. I¥f
this approach is indeed the way to ga, how are the E; s
related. Again, the third order Riccati should be embedded
somewhere in the resulting matrix.

&; Or should it? If not embedded, could other matrix
equations which are embedded as a matter of course yield, in
some combination, some (or all!) solutions of the third
order Riccati? Another concern arises: in the approaches
presented herein, a specially selected polynomial f(x)
played the crucial role of generating pairs of equations
whose common solutions included those of the matrix equation
in question. For the third order Riccati, how is the
polynomial to be selected? How shr.uild the pairs be

generated, if indeed this pattern holds? Perhaps triplets

of equations arise instead of pairs.
The unsettling thought occurs: maybe similarity

transforms are not powerful enough for the third order

6.5
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Riccati, and whole new approaches are in order. After all,
current research into these matrix equations is still in the
pioneering stages. Hopefully, the successful resolution to
the third order Riccati equation will point the way to
solving higher order Riccati equations. However, a spectre
appears: 1in solving for the roots of a polynomial in one
variable, the insolvability of the quintic was demonstrated
by Abel in the early nineteenth century. Could there be a
similar obstacle ahead for matrix equations? In any case,
finding solutions to matrix equations will prove challenging
and endlessly fascinating——as well as having immediate

practical applications.

The last recommendation is a minor one: create a new
;2 segment (in the computer program of Appendix A) which will
compute the determinant of a given square matrix having
multivariate polynomial entries. The method would have to
keep calculations down to a minimum, since finding
determinants is computationally intensive. One approach,
which seems to be the quickest way to find a matrix’'s
determinant, was published by G. Macloskie [22] in 1904.

This method could be adapted to that of finding determinants

for matrices with palynomial entries.




Appendix A: BASI roqra erforming matrix operation

The following BASIC program performs operations on
rectangular matrices having multivariate polynomial entries
over the real numbers. Via menu options, the interactive
program allows the user to

~create a matrix

~view a matrix

-transpose a matrix

—-add two matrices

-multiply two matrices

-extract the U,M,V,N matrices from a given matrix
The size of matrices which the program can handle is limited
only by the amount of memory available on the computer and
the parameters in the DIMENSION statement. The program was
designed on an IBM PC (DOS 3.0) and was intended to assist
the thesis effort.

The program‘s logic hinges upon the way it recognizes a
polynomial in n-variates: as a set of (n+1)-tuples each of
whose entries come from the coefficients and exponents of
the polynamial. To aobtain the tuples, the entire polynomial
is re-expressed in "standard form” as a sum of terms, each
having all variate and exponent paositions appear. For
instance, the polynomial in the variates x and y

2x2y = 17xy® - 3y + 7 (A. 1)
is re-expressed in standard form as
2xZyt 4 (S17x1y?) 4 (=3x°y?) + (7x°y°) (A.2)
and is the sum of the four terms 2xZy:, —-17x1ys, =3x°y1,

7%°y®., Though the order of the variates (i.e., x befare y

A.1




Qﬂ} is represented by the set
{ (2,2,1), (-17,1,9),

Similarly, the polynamial
XKeYe2ZgUyVv)
and thus the set of é6-tuples
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versus y before x) is arbitrary,

consistent.

Once in standard form, each term is put into its

tuple representation

the order must be

(coefficient, exponent.,....,exponent,)

(A. 3

with the polynomial represented by the collection of the

tuples. For the above example:

TERM 3-tuple
2x =2y ( 2,2,1)
-17xty= (-17,1,9)
=3x°y? (-3,0,1)
7x°y° ( 7,0,0)

and so the polynomial

2x2y — 17xy® - 3y + 7

(-3,0,1), (7,0,0) 3

42xyuvz - 2223yy

is re-expressed in the standard form (variate order is

A2x*yrzilurtyr + (-2x1y1zzyoyo)

{ (42’1’1’1’1,1)’ (-2’1,1,2,0,0) }

Addition and multiplication between two polynomials are

easily expressed in terms of their tuple representations

.............

'''''''
.....

.....

-, .
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—-all tuples have the same number of entries
-coordinate positions all correspond to the same
variable
Addition. Given two terms in n-variates, let (a,q) and
(b,l) be their respective (n+l)-tuple representations where
a,b are the coefficients of each term and g, the

exponent vectors. For example, if the terms are 3x®y and

7%x%yS, then

7xX%yS x (7,9,3) , b =7, 8 = (9,9
Tuple addition is defined by
{ (ay0), (b,B) > x + 6
(a,d) 3 (b,B) = " (A.4)
(a+b,X) a =0

The operation 3 is clearly commutative. To add two
polynomials, the tuples rerresenting the terms are added
according to (A.4). For example:

(2x=2y - Ixy=) + (4xy= + XZy)
¥ [(2,2,1) 3 (=9,1,2)] 3 [(4,1,2) 3 (1,2,1)1

then, rearranging terms

L(2,2,1) 3 (1,2,1)1 3 [(-9,1,2) 3 (4,1,2)1
(3,2,1) 3 (~5,1,2)

{ (3,2,1), (-5,1,2) 2

Ix®Fy — Sxy= |

< W0

Multiplication. Multiplication between two tuples is
defined by
(a,Q)*(b,B) = (ab,q+R) (A.3)
where @ + B is the familiar operation of addition between

two vectors in Euclidean n—-space. For example,
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(2xSyS) (6x7y®)

b
et =
=

2,3,9) (b

( 57 48)
(2%6,3+7 ,548}
(12,10,13)
12x toy1r> |
Using (A.S5) the tuple representation of the product
between two polynomials is quickly found. Consider the
product of the n—-term polynomial
TERMII + ame + TERM],H (A-b)
and the m-term polynomial
TER":!. + s es + TER"zm (AI 7)

which is

TERM, . (TERM21 + ... + TERMzm) + ... (A.B)
+ TERHln (TERMz; + s aam + TERMZM)

= (TERM;.TERMz, + ... + TERM,:TERM=2,.) + ...
+ (TERMy~TERM=z, + ... + TERM,;.TERM2.)

If the value of TERM,w«. is now changed to the tuple form
of the polynomial element TERM,., then the product of (A.6)

and (A.7) expressed in tuple form is

= (TERM.1:*TERMz: # ... % TERM;i1*TERMzm) # ...
# (TERM1n¢TERM21 % ... 3 TERM;TERMzm)

EXAMPLE:
(x2y> 12x‘y=)(x°y7 + 11x=y>)
(x2y=) (x2y7) + (xZy3) (11x°2y)
+ (12x2y=) (x2y7) + (12x%y>) (11x2y~)
[(1,2,3)¢(1,6,7)1 3 [(1,2,3)+(11,8,951

Ty
0+

¥, %X
N
<

- - # [(12,4,5)¢(1,6,7)3 3 [(12,4,5)¢(11,8,9)1]
- = (1,8,10) # (11,10,12)

. # (12,10,12) 3 (132,12,14)

- = (1,8,10) # (23,10,12) # (132,12,14)

e = { (1,8,10), (23,10,12), (132,12,14) >

?? ¥ XSBy10 4 23x1°oy12 4 132x12y14 n

B

Network. Put in a nutshell, the program keeps track of

--rTr
[Tt
[ St 4
oS

tuple operations using a system of pointers (program lines

1150-1490). That is, a network tree is constructed which
A.4
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represents the results of tuple operations. This section
assumes knowledge of networks as given in [10:91-124].

The fundamental insight is that a polynomial can be
represented by a tree. Specifically, the results of tuple
operations is maintained in a network tree whase nodes
represent a particular variate in a polynomial term. Nodal
"potentials” are the exponent of the corresponding variate.
Terminal nodes of the polynomial ‘s tree have a second
potential whose value is that of the coefficient of a

particular term. The i°'th depth of the tree corresponds to

the i’'th variate. For example, the polynomial

SxTyz1S - Tx12y%y 4+ Bx12yvyz2
is represented by the tree in Figure 1. All the nades at
depth one are x variates; nodes at depth two are y variates;
nodes at depth three are z variates. The numbers in [1 are
node potentials, and numbers in [1l#* are the coefficient of
the given polynomial term. From this example, it can be
seen that a polynomial term corresponds to a unigque path
from node O to a given terminal node at depth three, e.g.,
the term 8x'Fy¥z=2 hag the nodal path 0-4-5-7.

In performing a tuple operation, the order in which the
branches are built are term by term. The following example
illustrates the sequence in which the program builds
branches.

EXAMPLE: Construct the tree representing

XZ(1 + y) + y(xZ + y)

Il 8T _ or e 7
Lart
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A.S

Y Pl W

...........




R ORI~ 30 A Ba R i I 8 A Sl M ety v
~ -

CIIL e RARL oS Sl A k-2 s M in-2 el artA B

XZ(1 + y) + y(XZ + y) = x= 4+ x2y + yx= + yz
= Xzyo + xzyx + ylxz + xoyz (A-Q)

Since there are 2 variates x,y the tree will have 2 depths.
The first term is xZ®y° which contributes the first branch
0-1-2 in Figure 2. The second term x®y! contributes the
branch 0-1-3 in Figure 3. Note that the second potential of
naode 3 ([L1#) is 1: the coefficient of the second term x=3y:,
Because the third term of (A.9) is also x2y* it doesn’t
contribute a branch to the tree. However, the s=cond

potential at node 3 is increased by 1: the coefficient in

the third term x®y* (Figure 4). The fourth term x°y=
contributes the branch 0-4-5 in Figure 3. Since there are
no more terms in (A.9), the tree in Figure 5 represents the
Polynamial x=2(1 + y) + y(x=2 + y)

Manual :‘rput of data. When creating a matrix via the
menu prompt to "huild a matrix", polynomials are entered
term by term in their tuple form with no commas between
tuple entries. Each tuple MUST remain on the same line, and
each tuple except the last ends with a carriage return; the
last tuple ends with a semicolon followed by a carriage
return. The program will then prompt for the next
polynomial entry and the above protocol is repeated. A
sample session inputing the matrix

@ = X2 + 3xyz + z=2 4 + 2x - 3y] (A.10)
ze + {7y~e X2ySza

is given in Figure 6.

Qutput. The program outputs a polynomial in its tuple

A.6




adiadidh aan ot St an ot L daF har et 2aT Saf ta s Mn Ao Bod Bl e oare s T T Wy L T T T T T T W ey gy

;Q Cea form. Figure 7 is a sample session which printed the matrix

(F - fA(R) preceeding (4.23).
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MENU:
B Build a new matrix"
V View a matrix"
Transpose a matrix"
4+ Add 2 matrices"
# Multiply 2 matrices”
U Extract U,M,V,N matrices
EX T 2R TR RN AT R R R Y R T Y )
? B
Matrix name? B:@
ROW,COL dimension? 2,2
Number of polynomial variates? 3
Build a square diagonal matrix whose diagonal entries
are equal Y/N? N ,
*### COEF EXP1 EXP2 ... EXPn #¥**
a semicolon ; represents end of polynomial

Figure 6. Session building matrix (A.10)
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MENU:
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View a matrix"

Transpose a matrix”

Add 2 matrices"”

Multiply 2 matrices"”
Extract U,M,V,N matrices
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Screen output Y/N? Y
Matrix to view? B:fA(R)

MATRIX B:fA(R) IS 4 X 4 and has 2 polynomial variates

B:fA(RY( 1, 1): B:fA(R)( 3, 1):
o 0 O o 0 o0
B:fA(R)( 1, 2): B:fA(R)( 3, 2):
0O 0 O 0O 0 O
B:fA(R)( 1, 3): B:fA(RY( 3, 3):
-1 2 1 2 2 O

3 3 o0 -2 1 1
B:fA(RY( 1, 4): B:fA(R)( 3, 4):
-5 3 0 -3 2 0

7 2 1 2 1 1

-2 1 2

B:fA(R)( 2, 1): B:fA(R)( 4, 1):
o 0 O o 0 o
B:fA(R)( 2, 2): B:fA(R) ( 4, 2):
O 0 O o 0 O
B-fA(R)( 2, 3): B:fA(R)( 4, 3):
S 1 2 -1 1 1

-5 3 O -3 2 0

-2 0 3 2 0 2

2 2 1
B:fA(R) ( 2, 4): B:fA(R)( 4, 4):
2 1 2 S 2 O

8 3 O -4 {1 1

-8 2 1

Figure 7. Session viewing the matrix fA(R) preceeding

(4.23)

A.l1




x ;A_/l. A,

-

PO uf W St A

‘).'

NOTE:

10
20
30

40
350

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210

220
230

240
250

260
270
280

290
300

the program has been modified to fit within the
farmat requirements of the AFIT Style Guide, and so
doesn’'t represent the correct syntax of the program.
However, the adjustments are few and are apparent.

‘CPT Bruce W. Colletti, AFIT/EN; 1 August 1983

‘The input file for this program (which multiplies 2

‘matrices having multivariate polynomial entries)

‘has the following

‘structure:

‘ line 1: row, column dimension of matrix Aj;
number of variates

line 2: number aof terms in the A(1,1)

: polynomial

‘ line 3: tuple corresponding to the 1st term of

: A(1,1)

: line 4: tuple corresponding to the 2nd term of

! All,1)

! line n: tuple corresponding to the last term

: of A(1,1)

" line n+l: number of terms in the A(1,2)

' polynomial

‘ line n+2: tuple corresponding tao the 1ist term of

' A(l,2)

‘ line n+3: tuple corresponding to the 2nd term of

. A(1,2)

‘ line m: tuple corresponding to the last term

‘ of A(1,2)

‘ line m+1: number of terms in the A(1,3)

! polynomial

' etc: matrix entries are entered row at a
time

CLS : CLEAR

ROWS =5 : COLS = 5 : TERM = 25 : VAR = §

DIM A(ROWS,COLS,TERM,VAR), B(ROWS,COLS,TERM,VAR),
B%$ (20)

DIM F(90) ,POT(90) ,R(90) ,BACK (90) ,M(90) ,E (VAR)

DIM COEFL (ROWS,COLS) ,COEFR (ROWS,COLS)

‘A contains the elements of the left matrix and B
‘the elements of

‘the right (e.g., A + B, A®B):

‘Al ,J,K,L) the exponent of the L'th variate of the
‘K’'th term of the

‘ I-J°'th polynomial entry of A
‘B(l1,J,K,L) the exponent of the L’'th variate of the
‘K'th term of the

’ I-J’'th polynomial entry of B

: BACK (i) the node-back pointer for node i
‘COEFL(i,j) the number of terms in the polynomial
‘located at

' Ali,j)

‘COEFR(i ,j) the number of terms in the polynomial
‘located at




. 310
s 320

330
T 340
< 350

‘o 3460
' 370

b 380
o 390

400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
- 640
® 650
.

>

Bla s fe]

g, P ri=

‘r-.l'
PP AV

=y
o

Al W

Pt Nl \ 1
LRV (g

»
& s

660
670
680

690
ol 700
. 710
! 720
730
2 740
P 750
TR 760
T o 770

.....................
-----------------------

I

B(i,J)
E(i) contains the exponent of the i 'th
variable of the
product between 2 polynomial terms
F(i) forward pointer for node i
M(@i) the "summed coefficient". This is a
node in the final
tree with no forward pointer. It is
the coefficient of
that term of the polynomial having the
path from given
terminal node to source node
POT(i) potential of node i; that is, the
exponent aof the
variable represented by the node
: R(1) the right pointer for node i
PRINT " 35593636 3630 3636 3 36 369 3 3696 3 35 3636 36 36 36 3 9696 36 36 3 36 36 3 3 34 36 %
PRINT "MENU:"

L S . TR T )

* & 8 & & o

PRINT * B Build a new matrix"
PRINT " V View a matrix"”

PRINT * * Transpase a matrix”
PRINT " + Add 2 matrices"

PRINT *» # Multiply 2 matrices"”
PRINT * U Extract U,M,V,N matrices

PRINT ' 9963000033006 36 3030 300963696 96636963636 03636 383696 3606963696963 3¢
INPUT OPTS$
IF OPT$ = "B" THEN 2410

IF OPT$ = "V" THEN 2790
IF OPT$ = "U" THEN 3470
IF OPT$ = "'" THEN 3130

IF ((OPT$ <> "#") AND (OPT$ <> "+")) THEN 420
INPUT "Left matrix"; FILELS$

INPUT "Right matrix"; FILERS$

INPUT "Output matrix"; FILEOS$

IF OPT$ = "+" THEN 420

INPUT "2 ¢ R in JLEFT#RIGHT"; ALPHA : GOTO 630
INPUT "3,B ¢ R in GLEFT + BRIGHT"; ALPHA,BETA
FILE$ = FILEL$ : GOSUB 950

ROW1 = ROW : COL1 = COL = V1 =V
FILE$ = FILER$ : GOSUB 950
ROW2 = ROW : COL2 = COL : V2 = V

IF V1 <> V2 THEN 1730
IF ((OPT$ = "+") AND
((ROW1 <> ROW) OR (COL1 <> COL))) THEN 1560
IF ((OPT$ = "#") AND (COL1 <> ROW)) THEN 13540
OPEN FILEO$ FOR OUTPUT AS #2
IF OPT$ = "+" THEN GOSUB 2140
PRINT #2, ROW1; COL2; V
FOR Il = 1 TO ROW1
FOR I2 = 1 TO COL2
PRINT ll(ll; 11; ll’ll; 12; ll)ll
GOSUB 1800
FOR I3 =1 TO COL1

.....




N "T
O

N

3 . 780 TL = COEFL(I1,I3) : T2 = COEFR(I3,I2)
SO 790 FOR I4 = 1 TO T1

X ’ 800 FOR IS = 1 TO T2
! 810 PROD = ALPHA * A(I1,13,14,0) =*
- B(13,12,15,0)
- 820 FOR I6 =1 TO V

-7 830 E(l&) = A(I1,13,14,16) + B(13,12,15,16)
L 840 NEXT 16
850 GOSUB 1150

». 860 NEXT IS
o 870 NEXT I4
2 880 NEXT I3

A 890 GOSUB 1870

o 900 NEXT I2
SN 910 NEXT It
- 920 * CLOSE #2
T 930 STOP

-3 40 ‘Subroutine reads a matrix for +/# routines
0. 950 OPEN FILE$ FOR INPUT AS #1
- | 960 INPUT #1, ROW,COL,V

Ly 970 IF ((ROW > ROWS) OR (COL > COLS)) THEN 14620
hdl 980 FOR I = 1 TO ROW

8 990 FOR J = 1 TO COL

. 1000 INPUT #1, TERMS
[ 1010 IF TERMS > TERM THEN 1680
e ) 1020 IF FILE$ = FILELS THEN COEFL(I,J) = TERMS
hiy (- 1030 IF FILE$ = FILER$ THEN COEFR(I,J) = TERMS
- ¢ 1040 FOR K = 1 TO TERMS
ol 1050 FORL =0 TOV

oS 1060 IF FILE$ = FILER$ THEN 1080
- 1070 INPUT #1, A(I,J,K,L) : GOTO 1090
e 1080 INPUT #1, B(I,J,K,L)

. 1090 NEXT L

—~A 1100 NEXT K

v 1110 NEXT J
L 1120 NEXT I

- 1130 CLOSE #1

o 1140 RETURN

Py 1150 'Pointer ordering subroutine

T 1160 I =1 : CNODE = F(O) : BK = O
s 1170 IF CNODE = 0 THEN 1370
- 1180 BASE = BK

w3 1190 IF POT(CNODE) = E(I) THEN 1430
oo 1200 BK = CNODE
‘® 1210 CNODE = R(CNODE)

X 1220 IF CNODE <> O THEN 1190
I 1230 NODES = NODES + 1
= 1240 POT (NODES) = E(I)
5 1250 R(BK) = NODES
o 1260 BACK (NODES) = BASE

° 1270 BK = NODES
oo 1280 FOR J = I+1 TO V

o : 1290 NODES = NODES + 1

a

ol

°

RS
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1300
1310
1320
1330
1340
1350
1360

1370

1380
1390
1400
1410
1420
1430
1440
1450

1460
1470
1480
1490
1500
1510
1520

1530
1540
1550
1560
1570
1580

1590

1600
1610

1620
1630

1640
1650
1660
1670

1680
1690

1700

1710
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POT (NODES) = E(J)
BACK (NODES) = BK
F (BK) = NODES
BK = NODES
NEXT J
M(BK) = M(BK) + PROD
G60TO 1490
NODES = NODES + 1
F{(NODES) = O
F(BK) = NODES
BACK (NODES) = BK
CNODE = NODES
POT(CNODE) = E(I)
BASE = CNODE
I =1+1 ‘I is the same as the Depth of a node
IF (I > V) THEN M(CNODE) = M(CNODE) + PROD :
GOTO 1490
BK = CNODE
CNODE = F (CNODE)
GOTO 1170
RETURN
‘Error routine for too many polynomial variates
PRINT " 33363363030 33636 3636 36 30 903 363636 3696 36 36 3690 36 36 36 03696 36 3636 3696 6 36 96 36
PRINT CHR$(7); "DIM statement allaws only "; VAR;
"variables.";
PRINT " Modify DIM statement®;
STOP
"Error routine for ill-dimensioned matrices
PRINT " 36939636 36 3636 36 26 3 36 0 36 36 3636 3636 36 3 3 3 36 36 3 3636 36 36 3696 36 96 36 96 96 36 36 36
PRINT CHR$(7); "Dimensions incompatable"

PRINT " "; FILEL$ ; " is "; STR$(ROW1); " X “;
STR$ (COL1)

PRINT " "; FILERS$ ; " is “"; STR$(ROW); " X ";
STR$ (COL)

STOP

‘Error routine for matrices whaose dimensions are
‘too large

PRINT " 59653036 3 35 3 36 96 398 3 3 36 36 3 36 36 3 3 36 36 36 3 34 36 36 3 36 36 36 3 36 36 96 96 36 36 3696
PRINT CHR$(7); "Modify the dimension statement in
the program"

PRINT 3 "The dimensions of "; FILE®$; "is "3

STRS$ (ROW) 3

PRINT " X "; STR$(COL)

STOP

‘Error routine for a polynomial having too many
terms

PRINT " 599896 56 36 30 36 35 5 36 3 9 3536 36 36 3 36 36 96 36 3 96 36 36 3 36 36 3 36 3 3¢ 36 3 36 96 36 36 3 3¢ 3¢
PRINT CHR$(7); "There are "; TERMS; "terms in
the "

PRINT "polynomial, whereas the DIM statement
allocates "

PRINT TERM; " terms in the polynomial. Modify
DIM stmt."”
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1720
1730
1740

1750
1760
1770

1780
1790
1800
1810
1820
1830
1840
1850
1860
18790
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040

2050
2060

2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190

STOP
PRINT " 303851696 3309636 6 363 0 3 362 363696 26 3 36 626 3 3636 39696 3636 6 36 36 36 96 3696 3 36 34 ¥
PRINT CHR$(7); "Polynomial variates in matrices
aren‘t the same"
STOP
‘Error for finding U,M,V,N matrices
PRINT CHR$(7); "Source matrix "; FILE1$; " doesn’t
have even';
PRINT " row and column dimensions"
STOP
‘Subroutine to clear tree building variables
FOR I = O TO NODES
F(I) = 0 2 POT(I) = 0 2 R(I) = O
BACK(I) = 0 : M(I) =0
NEXT 1
NODES = O
RETURN
‘Subroutine prints polynomial term
§=0
FOR I =1 TO NODES ‘find # of terms in polynomial
IF M(I) <> O THEN § = § + 1
NEXT I
IF S = 0 THEN 1940
PRINT #2,5 : GOTD 2000
PRINT #2,"1";
FOR I = O TOV ‘'handles a zero entry in result
PRINT #2,0;
NEXT I
PRINT #2,""
6070 2130
FOR I = 1 TO NODES
IF M(I) = O THEN 2120

PRINT #2, M(I); ‘coefficient of term

PTR = 1
FOR J =V TO 1 STEP -1 ‘because we are going
from the
ZZ(J) = POT(PTR) ‘top of the tree down
but are
PTR = BACK(PTR) ‘writing the exponents
in the
NEXT J ‘reverse order

FOR J =1 TO V
PRINT #2, ZZ(J);
NEXT J
PRINT #2,""
NEXT I
RETURN
‘Addition subroutine
PRINT #2,ROW1; COL1; V1
FOR I1 = 1 TO ROW1
FOR 12 = 1 TO COL2
PRINT n(u; 11; u’n; 12; wy o
GOSUB 1800 ‘clear tree
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2200
2210
2220
2230
2240
2250
2240
2270
2280
2290
2300
2310
2320
2330
2340
2350
2340
2370
2380
2390
2400
2410
2420
2430
2440
24350
2440

2470
2480
2490
23500
2510
2520
2530
2540
2550

2560

2570
2580
2590
2600
2610
2620
2630
2640
25650
2660
2670
2680
2690

‘Send A(I1,I2) up through tree
FOR I4 = 1 TO CDEFL(I1,1I2)
PROD = ALPHA * A(I1 12,14,0)
FOR 16 = 1 TO V
E(I&) = A(IL1,12,14,16)

NEXT 16
60SUB 1150
NEXT I4

‘Send B(I1,I2) up through tree
FOR I4 = 1 TO COEFR(11,12)
PROD = BETA # B(I1,12,14,0)
FOR I6 =1 TO V
E(I&) = B(11,12,1I4,16)

NEXT 16
GOSUB 1150
NEXT 14
GOSuB 1870
NEXT I2
NEXT It
CLOSE #2
STOP

‘Matrix input subroutine
INPUT "Matrix name"; FILES
INPUT "ROW,COL dimension"; ROW,COL
INPUT "Number of polynomial variates"; V
OPEN FILE$ FOR QUTPUT AS #1
PRINT "Build a square diagonal matrix whose
diagonal entries ";
PRINT "are equal Y/N"; : INPUT OPT1$
IF (<(OPTi1$ <> "Y") AND (OPTi$ <> "N")) THEN 2440
PRINT CHR$(7); "#%% COEF EXP1 EXP2 ... EXPn #*%*"
PRINT " a semicolon ; represents end of polynomial”
PRINT #1, ROW; COL; V
FOR I = 1 TO ROW
FOR Jd = 1 TO COL
S=0: A% = ""
IF ((OPT1$ = "N") OR ((I=1) AND
(J=1))) THEN 2610
IF I =J THEN S = 59 : PRINT #1,S :
GOTO 2680
PRINT #1,1;
FOR K = 0 TO V : PRINT #1,0; : NEXT K
PRINT #1,""
60TO 2750
PRINT "("; STR$(I); ","; STR$(J); "): "
WHILE (RIGHT$(A$,1) <> "3")
S=86+1
INPUT AS$
B$(S) = A% : BB%$(S) = A%
WEND
PRINT #1,5 : 88 = 6§
FOR K =1 70 S-1
IF OPT1$="Y" THEN B#% (K)=BB$ (K)
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2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860

2870
2880
2890

2900
2910
2920
2930
2940
2930
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3040
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200

T A
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PRINT #1,B$(K)
NEXT K
IF OPTi$ = "Y" THEN B#$(S) = BB#(S)
PRINT #1,LEFT$(B$(5) ,LEN(B$(S5))-1)
PRINT
NEXT J
NEXT I
CLOSE #1
GaTO 420
‘subroutine views a matrix file
INPUT "Screen output Y/N"; OPT1S$
IF ((OPT1$ <> "Y") AND (OPTis$ <> "N")) THEN 2800
INPUT "Matrix to view"; FILES$
OPEN FILE$ FOR INPUT AS #1
INPUT #1, ROW,COL,V
IF OPT1s$ = "Y" THEN 2890
LPRINT "MATRIX "3 FILE®$; " IS "; STR$(ROW);
" X"; STR$(COL);
LPRINT " and has "; STR$(V); " polynomial variates"
60TO 2920
PRINT "MATRIX "; FILE$; " IS "“; STR$(ROW); " X";
STR$ (COL) ;
PRINT " and has "3 STR#$(V); " polynomial variates”
PRINT
FOR I =1 70 ROW
FOR Jd = 1 TO COL
IF OPT1s$ = "Y" THEN 2970
LPRINT FILE®$; ”"("3; STR$(I); ","; STR$(J); ")z "
GOTO 2980
PRINT FILE®$; “("; STR$(I); ","”; STR$(J); "): "
INPUT #1,S
FORK=1T0 S
LINE INPUT #1, AS
IF OPT1$ = "Y" THEN 3030
LPRINT A$ : GOTO 3040
PRINT AS$
NEXT K
IF DPT1$ = "yY" THEN 3080
LPRINT
GOTO 3090
PRINT
NEXT J
NEXT 1
CLOSE #1
GOTO 420
‘Subroutine transposes a matrix
INPUT "Matrix to transpose"; FILES
INPUT "Matrix to store transpose in"; FILED#
OPEN FILE®% FOR INPUT AS #1
INPUT #1, ROW,COL,V
IF ((ROW > ROWS) OR (COL > COLS)) THEN 1620
FOR I = 1 TO ROW
FOR Jd = 1 TO COL

A AT T
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R 3210 INPUT #1, TERMS

S 3220 IF TERMS > TERM THEN 1680

N 3230 COEF(I,J) = TERMS

( 3240 FOR K = 1 TO TERMS

- 3250 FORL =0 TO V

- 3260 INPUT #1i, A(I,J,K,L)
3270 NEXT L

o 3280 NEXT K

- 3290 NEXT J

p. 3300 NEXT I

L 3310 CLOSE #1
3320 OPEN FILEO$ FOR OUTPUT AS #1

.- 3330 PRINT #1,COL;ROW;V
o 3340 FOR I = 1 TO COL

o 3350 FOR J = 1 TO ROW
L 3360 PRINT #1, COEF(J,I)
A 3370 FOR K = 1 TO COEF(J,I)
3380 FOR L =0TOV
3390 PRINT #1, A(J,I,K,L);
3400 NEXT L
- 3410 PRINT #1,""
* 3420 NEXT K
: 3430 NEXT J
. 3440 NEXT I
3450 CLOSE #1
- . 3460 G60OTO 420
( : V; 3470 ‘Extracts U,M,V,N matrices
- 34890 INPUT "Source matrix of U,M,V,N"s FILEL$
3490 INPUT "Disk to output to A/B"; D%
3500 IF ((D$ <> "AY) AND (D$ <> "B")) THEN 3490
3510 D& = D$ + “:"
- 3520 PRINT CHR$(7); "##% WARNING: files will be
® output to "; D#;
3530 PRINT "U,M,V,N *%% ";
3540 INPUT "“OK Y/N"; OPTS$

3550 IF OPT$ <> "Y" THEN STOP

3 3560 FILE2¢ = D$ + "u"
<¥ 3570 FILE3$ = D$ + "M"
ry 3580 FILE4$ = D$ + "V"
; 3590 FILES$ = D$ + "N"

3600 OPEN FILE1$ FOR INPUT AS #1

3610 OPEN FILE2% FOR OUTPUT AS #2
3620 OPEN FILE3$ FOR OUTPUT AS #3
3630 OPEN FILE4$ FOR OQUTPUT AS #4

° 3640 OPEN FILES$ FOR OUTPUT AS #5

: 34650 INPUT #1,ROW,COL,V

o 3660 ROW1 = ROW/2 : COL1 = COL/2

- 3670 IF ((ROW1 <> INT(ROW1)) OR

s (COL1 <> INT(COL1))) THEN 176&0

o 3480 FOR I =2 TO S : PRINT #I,ROW1,COL1,V : NEXT I
° A 3690 FOR I = 1 TO ROW

o A 3700 FOR J = 1 TO COL

3710 INPUT #1,S
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3720
3730
3740
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3770
3780
3790
3800
3810
3820
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FIL = 5
IF (I <= ROW1) THEN FIL = 2
IF ((FIL = 2) AND (J > COL1)) THEN FIL = 3

IF ((FIL = 3) AND (J <= COL1)) THEN FIL = 4
PRINT #FIL,S
FOR K =170 S
LINE INPUT #1,A%$
PRINT #FIL,A$
NEXT K
NEXT J
NEXT I
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